【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=6sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P(4,3),直線l與圓C相交于A,B兩點,求 的值.
【答案】解:(Ⅰ)由直線l的參數(shù)方程為 (t為參數(shù)),得直線l的普通方程為x+y﹣7=0. 又由ρ=6sinθ得圓C的直角坐標(biāo)方程為x2+(y﹣3)2=9;
(Ⅱ)把直線l的參數(shù)方程 (t為參數(shù)),代入圓C的直角坐標(biāo)方程,
得 ,
設(shè)t1 , t2是上述方程的兩實數(shù)根,
所以t1+t2=4 ,t1t2=7,
∴t1>0,t2>0,
所以 =
【解析】(Ⅰ)把直線l的參數(shù)方程消去參數(shù)t可得,它的直角坐標(biāo)方程;把圓C的極坐標(biāo)方程依據(jù)互化公式轉(zhuǎn)化為直角坐標(biāo)方程.(Ⅱ)把直線l的參數(shù)方程 (t為參數(shù)),代入圓C的直角坐標(biāo)方程,得 ,結(jié)合根與系數(shù)的關(guān)系進(jìn)行解答.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的函數(shù).①若存在,使成立,則函數(shù)在上單調(diào)遞增;②若存在,使成立,則函數(shù)在上不可能單調(diào)遞減;③若存在對于任意都有成立,則函數(shù)在上單調(diào)遞增.則以上述說法正確的是_________.(填寫序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動支付公司從我市移動支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數(shù)據(jù)完成下列2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認(rèn)為“移動支付活躍用戶”與性別有關(guān)?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計 | |
男 | |||
女 | |||
總計 | 100 |
(2)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”,視頻率為概率,在我市所有“移動支付達(dá)人”中,隨機(jī)抽取4名用戶.為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達(dá)人”每人獎勵300元,記獎勵總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點F1與拋物線y2=﹣4x的焦點重合,橢圓E的離心率為 ,過點M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點,點P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜好體育運動是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯概率不超過的前提下認(rèn)為喜好體育運動與性別有關(guān)?說明你的理由.
(參考公式: )
臨界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個對稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2-2mx+m=0沒有實數(shù)根;命題q:x∈R,x2+mx+1≥0.
(1)寫出命題q的否定“q”.
(2)如果“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當(dāng)x∈[2,3]時,f(x)=x,則當(dāng)x∈(﹣2,0)時,函數(shù)f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com