2.${∫}_{0}^{1}$(-x2-1)dx=( 。
A.$-\frac{1}{3}$B.-2C.-1D.$-\frac{4}{3}$

分析 直接根據(jù)定積分的計算法則計算即可.

解答 解:${∫}_{0}^{1}$(-x2-1)dx=(-$\frac{1}{3}$x3-x)|${\;}_{0}^{1}$=-$\frac{1}{3}$-1=-$\frac{4}{3}$,
故選:D

點評 本題考查了的定積分的計算,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù):f(x)=lnx-ax+1(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對于任意的a∈[$\frac{1}{2}$,2],若函數(shù)g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]+3在區(qū)間(a,4)上有最值,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.雙曲線$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的離心率為( 。
A.$\frac{5}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{3}{4}$D.$\frac{{\sqrt{7}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,AC=4,M為AC的中點,BM=3,則$\overrightarrow{BC}$•$\overrightarrow{BA}$=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集)
①若“a,b∈R,則a-b>0⇒a>b”類比推出“a,b∈C,則a-b>0⇒a>b”;
②“若a,b∈R,則a•b∈R”類比推出“若a,b∈C,則a•b∈C″;
③由向量$\overrightarrow a$的性質(zhì)|$\overrightarrow a$|2=${\overrightarrow a^2}$,可以類比得到復數(shù)z的性質(zhì):|z|2=z2;
④“若a,b,c,d∈R,則a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
其中類比結(jié)論正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.過圓C:(x-1)2+(y-1)2=1的圓心,作直線分別交x軸、y軸的正半軸于A、B兩點,△AOB被圓分成四部分(如圖),若這四部分圖形的面積滿足S1+S4=S2+S3,則直線AB有( 。
A.1條B.2條C.3條D.0條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知拋物線的方程為標準方程,焦點在x軸上,其上點P(-3,m)到焦點F1的距離為5,則拋物線方程為( 。
A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.從0到5的六個數(shù)字中取兩個偶數(shù)和兩個奇數(shù)組成沒有重復數(shù)字的四位數(shù).試問:
(1)能組成多少個不同的四位數(shù)?
(2)四位數(shù)中,兩個偶數(shù)排在一起的有幾個?
(3)兩個偶數(shù)不相鄰的四位數(shù)有幾個?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知sinθ=$\frac{1}{3}$,θ∈($\frac{π}{2}$,π),則cosθ=(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$-\frac{2}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$-\frac{12}{13}$

查看答案和解析>>

同步練習冊答案