15.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x+m(m為常數(shù)),則f(-2)的值為( 。
A.$-\frac{8}{9}$B.$-\frac{1}{9}$C.-8D.8

分析 由題設(shè)條件可先由函數(shù)在R上是奇函數(shù)求出參數(shù)m的值,求函數(shù)函數(shù)的解板式,再由奇函數(shù)的性質(zhì)得到f(-2)=-f(2)代入解析式即可求得所求的函數(shù)值,選出正確選項(xiàng).

解答 解:由題意,f(x)是定義在R上的奇函數(shù),
當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),
∴f(0)=30+m=0,解得m=-1,
故有x≥0時(shí)f(x)=3x-1
∴f(-2)=-f(2)=-(32-1)=-8,
故選:C.

點(diǎn)評 本題考查函數(shù)奇偶性質(zhì),解題的關(guān)鍵是利用f(0)=0求出參數(shù)m的值,再利用性質(zhì)轉(zhuǎn)化求值,本題考查了轉(zhuǎn)化的思想,方程的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對邊分別是a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(Ⅰ)求證:tanA=3tanB;
(Ⅱ)若B=45°,b=$\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow a$與$\overrightarrow b$均為單位向量,它們的夾角為60°,那么$|3\overrightarrow a+2\overrightarrow b|$=( 。
A.$\sqrt{7}$B.1C.$\sqrt{19}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列參數(shù)方程與普通方程x2+y-1=0表示同一曲線的方程是( 。
A.$\left\{{\begin{array}{l}{x=sint}\\{y={{cos}^2}t}\end{array}}\right.$(t為參數(shù))B.$\left\{\begin{array}{l}{x=tanφ}\\{y=1-ta{n}^{2}φ}\end{array}\right.$(φ為參數(shù))
C.$\left\{{\begin{array}{l}{x=\sqrt{1-t}}\\{y=t}\end{array}}\right.$(t為參數(shù))D.$\left\{{\begin{array}{l}{x=cosθ}\\{y={{sin}^2}θ}\end{array}}\right.$(θ為參數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=7,S9=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)當(dāng)x∈$[\frac{π}{4},\frac{π}{2}]$時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)直線l:3x+4y+4=0,圓C:(x-2)2+y2=r2(r>0),若圓C上存在兩點(diǎn)P,Q,直線l上存在一點(diǎn)M,使得∠PMQ=90°,則r的取值范圍是[$\sqrt{2}$,+∞].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC中,AB=1,$\overrightarrow{AB}$$•\overrightarrow{AC}$=2,當(dāng)角C最大時(shí),△ABC的面積為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一對父子參加一個(gè)親子摸獎(jiǎng)游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個(gè)的甲袋子里隨機(jī)取兩個(gè)球,兒子在裝有紅色、白色、黑色球各一個(gè)的乙袋子里隨機(jī)取一個(gè)球,父子倆取球相互獨(dú)立,兩人各摸球一次合在一起稱為一次摸獎(jiǎng),他們?nèi)〕龅娜齻(gè)球的顏色情況與他們獲得的積分對應(yīng)如表:
所取球的情況三個(gè)球均為紅色三個(gè)球均不同色恰有兩球?yàn)榧t色其他情況
所獲得的積分18090600
(1)求一次摸獎(jiǎng)中,他們所獲得的積分為X,求X的分布列及數(shù)學(xué)期望
(2)按照以上規(guī)則重復(fù)摸獎(jiǎng)三次,求至少有兩次獲得積分為60的概率.

查看答案和解析>>

同步練習(xí)冊答案