已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(1+x).
(1)當(dāng)x<0時(shí),求f(x);   
(2)畫出函數(shù)f(x)在R上的圖象.
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)x<0,則-x>0,代入f(x)=x(1+x)結(jié)合函數(shù)是奇函數(shù)求得函數(shù)在x<0時(shí)的解析式;
(2)分段作出兩個(gè)二次函數(shù)的部分圖象得分段函數(shù)的圖象.
解答: 解;(1)設(shè)x<0,則-x>0,
∴f(-x)=-x(-x+1),
∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(x)=-f(-x)=-x(x-1).
f(x)=
x(1+x),x≥0
-x(x-1),x<0

(2)函數(shù)圖象如圖:
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的性質(zhì),考查了分段函數(shù)解析式的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∪B=A,求a的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
25
+
y2
9
=1的左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),且∠F1PF2=α.求△F1PF2的面積.(用a、b、α表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(2-a)x+4,a∈R
(1)若a=8,求不等式f(x)>0的解;
(2)若f(x)=0有兩根,一根小于2,另一根大于3且小于4,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)=x2+(2-a)x+4在區(qū)間[1,3]內(nèi)有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)設(shè)G為AB上一點(diǎn),且平面ADE∥平面CFG,求AG長(zhǎng);
(2)求證:平面BCF⊥平面ACFE;
(3)點(diǎn)E在線段EF上運(yùn)動(dòng),設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=x2-2x-3在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ、cosθ是關(guān)于x的方程x2-
2
x+a=0的兩個(gè)根.
(1)求實(shí)數(shù)a的值;
(2)求sinθ-cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
ex

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)過(guò)點(diǎn)P(0,
4
e2
)作直線l與曲線y=f(x)相切,求證:這樣的直線l至少有兩條,且這些直線的斜率之和m∈(
e2-1
e2
2e3-1
e2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,點(diǎn)M是線段PD的中點(diǎn).點(diǎn)N在線段PD上,且
PN
=
3
4
PD

(1)求證:AM⊥平面PCD;
(2)求直線BD與平面PCD所成角的正弦值的大;
(3)求cos<
AN
,
BD
>.

查看答案和解析>>

同步練習(xí)冊(cè)答案