【題目】已知關(guān)于x的函數(shù)y=(m+6)x2+2(m﹣1)x+m+1恒有零點(diǎn).
(1)求m的范圍;
(2)若函數(shù)有兩個(gè)不同零點(diǎn),且其倒數(shù)之和為﹣4,求m的值.
【答案】
(1)解:當(dāng)m+6=0時(shí),m=﹣6,函數(shù)為y=﹣14x﹣5顯然有零點(diǎn).
當(dāng)m+6≠0時(shí),m≠﹣6,由△=4(m﹣1)2﹣4(m+6)(m+1)=﹣36m﹣20≥0,得m≤﹣ .
∴當(dāng)m≤﹣ 且m≠﹣6時(shí),二次函數(shù)有零點(diǎn).
綜上可得,m≤﹣ ,即m的范圍為(﹣∞,﹣ ]
(2)解:設(shè)x1,x2是函數(shù)的兩個(gè)零點(diǎn),則有 x1+x2=﹣ ,x1x2= .
∵ + =﹣4,即 =﹣4,
∴﹣ =﹣4,解得m=﹣3.
且當(dāng)m=﹣3時(shí),m+6≠0,△>0,符合題意,
∴m的值為﹣3
【解析】(1)當(dāng)m+6=0時(shí),即m=﹣6時(shí),滿足條件.當(dāng)m+6≠0時(shí),由≥0求得m≤﹣ 且m≠﹣6.綜合可得m的范圍.(2)設(shè)x1,x2是函數(shù)的兩個(gè)零點(diǎn),由條件并利用一元二次方程根與系數(shù)的關(guān)系求得m的值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和函數(shù)的零點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組有9名學(xué)生.若從9名學(xué)生中選取3人,則選取的3人中恰好有一個(gè)女生的概率是 .
(1)該小組中男女學(xué)生各多少人?
(2)9個(gè)學(xué)生站成一列隊(duì),現(xiàn)要求女生保持相對(duì)順序不變(即女生 前后順序保持不變)重新站隊(duì),問(wèn)有多少種重新站隊(duì)的方法?(要求用數(shù)字作答)
(3)9名學(xué)生站成一列,要求男生必須兩兩站在一起,有多少種站隊(duì)的方法?(要求用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f(1)=1,且對(duì)于任意的x∈R,都有f′(x)< ,則不等式f(log2x)> 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合M={x||x﹣ | },P={x|﹣1≤x≤4},則(UM)∩P等于( )
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3<x≤4}
D.{x|3≤x≤4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐 的底面為正方形,側(cè)面 底面 , , 分別為 的中點(diǎn).
(1)求證: 面 ;
(2)求證:平面 平面 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x4﹣2x3 , g(x)=﹣4x2+4x﹣2,x∈R.
(1)求f(x)的最小值;
(2)證明:f(x)>g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,數(shù)列{an}滿足an=n﹣1,輸入n=4,x=3,則輸出的結(jié)果v的值為( )
A.34
B.68
C.96
D.102
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com