分析 令f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6=0,解得λ=2或3.分別對應的一個特征向量為$[\begin{array}{l}{2}\\{1}\end{array}]$;$[\begin{array}{l}{1}\\{1}\end{array}]$.設$[\begin{array}{l}{5}\\{3}\end{array}]$=m$[\begin{array}{l}{2}\\{1}\end{array}]$++n$[\begin{array}{l}{1}\\{1}\end{array}]$.解得m,n,即可得出.
解答 解:∵f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6,由f(λ)=0,解得λ=2或3.
當λ=2時,對應的一個特征向量為α1=$[\begin{array}{l}{2}\\{1}\end{array}]$;當λ=3時,對應的一個特征向量為α2=$[\begin{array}{l}{1}\\{1}\end{array}]$.
設$[\begin{array}{l}{5}\\{3}\end{array}]$=m$[\begin{array}{l}{2}\\{1}\end{array}]$++n$[\begin{array}{l}{1}\\{1}\end{array}]$.解得$\left\{\begin{array}{l}{m=2}\\{n=1}\end{array}\right.$.
∴A5$\overrightarrow{a}$=2×25$[\begin{array}{l}{2}\\{1}\end{array}]$+1×35$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{371}\\{307}\end{array}]$.
點評 本題考查了矩陣與變換、特征向量,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -9 | B. | 9 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,3) | B. | (0,3] | C. | (0,3) | D. | (-1,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com