13.在△ABC中,三個角滿足2A=B+C,且最大邊與最小邊分別是方程x2-12x+32=0的兩根,則△ABC外接圓的面積為( 。
A.16πB.64πC.124πD.156π

分析 根據(jù)2A=B+C求出A=60°,并判斷出最大邊與最小邊,利用一元二次方程的根與系數(shù)的關系和題意,得出最大邊與最小邊之間的等量關系,再利用余弦定理求出邊a,利用正弦定理求出外接圓的半徑,再外接圓的面積即可.

解答 解:由題意得,2A=B+C,則A=60°,所以a既不是最大邊也不是最小邊,
不妨假設c為最大邊,b為最小邊,則b+c=12,bc-32,
由余弦定理得,a2=b2+c2-2bccos60°=(b+c)2-3bc=48,
解得a=4$\sqrt{3}$
由正弦定理得,2R=$\frac{a}{sinA}$=8,則R=4,
所以△ABC的外接圓面積是S=πR2=16π,
故選:A.

點評 本題考查余弦、正弦定理,內(nèi)角和定理的應用,以及一元二次方程根與系數(shù)的關系和三角形三邊關系,綜合性較強.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列積分值為2的是( 。
A.${∫}_{0}^{1}$2xdxB.01exdxC.${∫}_{1}^{e}$$\frac{1}{x}$dxD.0πsinxdx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.正項數(shù)列{an}滿足:an2-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=2n-1 an-n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知△ABC的三個頂點分別為A(1,2),B(5,0),C(3,4).
(1)求過點A且與直線BC垂直的直線方程.
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ax3+bx2(a≠0),在x=1時取得極值3,求:
(1)f(x)的表達式;
(2)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知AB=AD=2,BC=2BD=2$\sqrt{3}$,求sinC的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求f(x)=($\frac{1}{3}$)x+lg${\;}_{\frac{1}{2}}$x(0<x≤2)最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-…+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,則下列結(jié)論正確的是( 。
A.f(x)在(0,1)上恰有一個零點B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(-1,0)上恰有一個零點D.f(x)在(-1,0)上恰有兩個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=-x3+ax2+bx+c的一個極值點是x=1,則9a+3b的最小值是( 。
A.10B.$2\sqrt{3}$C.$6\sqrt{3}$D.$4\sqrt{6}$

查看答案和解析>>

同步練習冊答案