14.已知i是虛數(shù)單位,則$\frac{3-i}{2+i}$對應的點在復平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復數(shù)代數(shù)形式的乘除運算化簡,求出$\frac{3-i}{2+i}$對應的點在復平面的坐標得答案.

解答 解:∵$\frac{3-i}{2+i}$=$\frac{(3-i)(2-i)}{(2+i)(2-i)}=\frac{5-5i}{5}=1-i$,
∴$\frac{3-i}{2+i}$對應的點在復平面的坐標為(1,-1),在第四象限.
故選:D.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.過點P(1,0)作拋物線y=$\sqrt{x-2}$的切線,求該切線與拋物線y=$\sqrt{x-2}$及x軸所圍平面圖形繞x軸旋轉而成的旋轉體體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.一個袋子里面有4個白球和3個黑球,這些球除顏色外完全相同,現(xiàn)從中取2個球,求下列條件下取出白球個數(shù)X的分布列:
(1)每次取后不放回;
(2)每次取后放回.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪70元,每單抽成2元; 乙公司無底薪,40單以內(含 40 單)的部分每單抽成4元,超出 40 單的部分每單抽成6元.假設同一公司的送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) 3839404142
天數(shù)2040201010
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) 3839404142
天數(shù)1020204010
(Ⅰ)現(xiàn)從甲公司記錄的這100天中隨機抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答以下問題:
(ⅰ)記乙公司送餐員日工資X(單位:元),求X的分布列和數(shù)學期望;
(ⅱ)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{x+1,x≤0}\end{array}\right.$,g(x)=log2x,若f(a)+f[g(a)]=0,則實數(shù)a的值等于(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(2x+1)5=a0+a1(x+1)+a2(x+1)2+…+a5(x+1)5則a4=80.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直三棱柱ABC-A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點,BC=AC=CC1,則CN與AM所成角的余弦值等于( 。
A.$\frac{2}{5}$B.$\frac{\sqrt{30}}{10}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{70}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.班主任為了對本班學生的考試成績進行分折,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.
(I)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)
(Ⅱ)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應如表:
學生序號i 1 2 3 4 5 6 7
 數(shù)學成績xi 60 6570  7585  8790 
 物理成績yi 7077  8085  9086  93
(i)若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為ξ,求ξ的分布列和數(shù)學期望;
(ii)根據(jù)上表數(shù)據(jù),求物理成績y關于數(shù)學成績x的線性回歸方程(系數(shù)精確到0.01);
若班上某位同學的數(shù)學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜郑?br />附:回歸直線的方程是:$\widehat{y}=bx+a$,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}-b\overline{x}$.
 $\overline{x}$ $\overline{y}$ $\sum_{i=1}^{7}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{7}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$
 7683  812526

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.某班有男生26人,女生24人,從中選一位同學為數(shù)學科代表,則不同選法的種數(shù)是( 。
A.50B.26C.24D.616

查看答案和解析>>

同步練習冊答案