分析 首先根據(jù)切線方程求得切線的斜率,并且求得切線方程,在根據(jù)積分求得,旋轉(zhuǎn)體的體積.
解答 解:設(shè)切點(diǎn)坐標(biāo)為(x0,y0)則${y}_{0}=\sqrt{{x}_{0}-2}$
y=$\sqrt{x-2}$
$y′=\frac{1}{2\sqrt{x-2}}$
則切線方程為:$y-{y}_{0}=\frac{1}{2\sqrt{{x}_{0}-2}}(x-{x}_{0})$
且切線通過點(diǎn)P(1,0)
∴代入上面方程,解得:x0=3
切點(diǎn)坐標(biāo)為(3,1)
切線方程:$y=\frac{1}{2}(x-1)$
切線與拋物線及x軸旋轉(zhuǎn)一周所成旋轉(zhuǎn)體的體積
$V={∫π}_{1}^{3}[\frac{1}{2}(x-1)]^{2}dx$-${π∫}_{2}^{3}(\sqrt{x-2})^{2}dx$
=$\frac{π}{12}(\frac{x}{2}-\frac{1}{2})^{3}{丨}_{1}^{3}$-$π\(zhòng)frac{(x-2)^{2}}{2}{丨}_{2}^{3}$
=$\frac{π}{6}$
故答案為$\frac{π}{6}$
點(diǎn)評 本題考查求切線方程,利用積分求旋轉(zhuǎn)體的體積,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{2}}{3}$ | B. | (8+4$\sqrt{2}$)π | C. | (8+2$\sqrt{2}$)π | D. | (4+2$\sqrt{2}$)π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{π}{6},0})∪({0,\frac{π}{6}})$ | B. | $({-\frac{π}{6},0})∪({\frac{π}{6},π})$ | C. | $({-\frac{π}{6},0})∪({\frac{π}{6},\frac{π}{2}})$ | D. | $({-π,-\frac{π}{6}})∪({0,\frac{π}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com