【題目】動(dòng)點(diǎn)在拋物線(xiàn)上,過(guò)點(diǎn)作垂直于軸,垂足為,設(shè).
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)若點(diǎn)是上的動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線(xiàn):的兩條切線(xiàn),切點(diǎn)分別為,設(shè)點(diǎn)到直線(xiàn)的距離為,求的最小值。
【答案】(Ⅰ)(Ⅱ)
【解析】
(I)設(shè)點(diǎn),利用將表示為的形式,然后代入拋物線(xiàn)方程,化簡(jiǎn)后可求得軌跡的方程.(II)設(shè)點(diǎn),利用導(dǎo)數(shù)求得切線(xiàn)的方程.對(duì)比后可求得直線(xiàn)的方程,再利用點(diǎn)到直線(xiàn)的距離公式求得的表達(dá)式,化簡(jiǎn)后利用基本不等式求得的最小值.
(1)設(shè)點(diǎn),
則由,得
因?yàn)辄c(diǎn)在拋物線(xiàn)上,所以點(diǎn)的軌跡的方程為:
(2)設(shè)點(diǎn),
由,得;所以
故的方程為
又點(diǎn)在直線(xiàn)上,所以
又,故,將其代入式
得即
同理得:
因?yàn)辄c(diǎn)均滿(mǎn)足方程
所以的方程為即
于是,
令,則,
則
當(dāng)且僅當(dāng)即時(shí)取等號(hào)所以的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線(xiàn)l:y=2x+2,若l與橢圓 的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為 的點(diǎn)P的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某海礁A處有一風(fēng)暴中心,距離風(fēng)暴中心A正東方向200km的B處有一艘輪船,正以北偏西a(a為銳角)角方向航行,速度為40km/h.已知距離風(fēng)暴中心180km以?xún)?nèi)的水域受其影響.
(1)若輪船不被風(fēng)暴影響,求角α的正切值的最大值?
(2)若輪船航行方向?yàn)楸逼?5°,求輪船被風(fēng)暴影響持續(xù)多少時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有如下3個(gè)命題;
①雙曲線(xiàn)上任意一點(diǎn)到兩條漸近線(xiàn)的距離乘積是定值;
②雙曲線(xiàn)的離心率分別是,則是定值;
③過(guò)拋物線(xiàn)的頂點(diǎn)任作兩條互相垂直的直線(xiàn)與拋物線(xiàn)的交點(diǎn)分別是,則直線(xiàn)過(guò)定點(diǎn);其中正確的命題有( 。
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為,離心率為,橢圓的右頂點(diǎn)為.
(1)求該橢圓的方程;
(2)過(guò)點(diǎn)作直線(xiàn)交橢圓于兩個(gè)不同點(diǎn),求證:直線(xiàn)的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)C:(a>0,b>0)的漸近線(xiàn)方程為y=±x,O為坐標(biāo)原點(diǎn),點(diǎn)在雙曲線(xiàn)上.
(I)求雙曲線(xiàn)C的方程.
(II)若斜率為1的直線(xiàn)l與雙曲線(xiàn)交于P,Q兩點(diǎn),且=0,求直線(xiàn)l方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C: =1的右焦點(diǎn)F,過(guò)焦點(diǎn)F的直線(xiàn)l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線(xiàn)為l,l與l0相交于點(diǎn)M,與直線(xiàn)l1:x=3相交于N.
(I) 求證;直線(xiàn) =1是橢圓C在點(diǎn)P處的切線(xiàn);
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請(qǐng)問(wèn)△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請(qǐng)求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)中的秦九韶算法,執(zhí)行該程序框圖,則輸出的結(jié)果S表示的值為( )
A.a0+a1+a2+a3
B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3
D.a0x3+a1x2+a2x+a3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱A1B1的中點(diǎn),則直線(xiàn)AE與平面BDD1B1所成角的正弦值 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com