4.滿足{1,2}?A⊆{1,2,3,4}的集合A的個數(shù)是3.

分析 利用集合間的關(guān)系可知:集合A中除了含有1,2兩個元素以外,至少必須含有另外一個元素,據(jù)此即可求出答案.

解答 解:∵{1,2}?A⊆{1,2,3,4},
∴集合A中除了含有1,2兩個元素以外,至少必須含有另外一個元素,
因此滿足條件的集合A為{1,2,3},{1,2,4},{1,2,3,4}共3個.
故答案為3.

點評 本題考查了子集與真子集的概念,熟練掌握由集合間的關(guān)系得到元素關(guān)系是解題的關(guān)鍵,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>1\\ \frac{1}{{{2^{x-1}}}},x≤1\end{array}\right.$,則f(f(4))=( 。
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若直線l:y=$\sqrt{3}$x與圓C:x2-4x+y2=0相交于A,B兩點,則弦長|AB|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若直線y=kx+1與雙曲線x2-y2=2的左支交于不同的兩點,則k的取值范圍是(1,$\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知兩點M(-1,2)與N(3,4),若點P在直線l:y=x上,則|PM|+|PN|的取值構(gòu)成的集合為[$\sqrt{26}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知點A(0,5),圓C:x2+y2+4x-12y+24=0
(1)若直線l過A(0,5)且被圓C截得的弦長為4$\sqrt{3}$,求直線l的方程;
(2)點M(-1,0),N(0,1),點Q是圓C上的任一點,求△QMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知f(x)是偶函數(shù),當x≥0時,f(x)=x+1,則f(-1)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,內(nèi)角A、B、C的對邊長分別為a,b,c,若b2+c2-a2=bc
(1)求角A的大。
(2)若$a=\sqrt{3}$,求BC邊上的中線AM的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.執(zhí)行如圖所示的程序框圖,若S0=2,則程序運行后輸出的n的值為4.

查看答案和解析>>

同步練習冊答案