16.與向量$\vec a=({3,4})$,$\vec b=({4,3})$的夾角相等的單位向量是(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)或($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

分析 設(shè)出單位向量,再由向量夾角的公式,根據(jù)數(shù)量積的坐標(biāo)表示和模的公式列出方程,再由單位向量的模為1,得到方程,解方程即可得到.

解答 解:設(shè)與$\overrightarrow{a},\overrightarrow$夾角相等的單位向量為$\overrightarrow{c}$=(x,y),
則$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}|•|\overrightarrow{c}|}$=$\frac{\overrightarrow•\overrightarrow{c}}{|\overrightarrow|•|\overrightarrow{c}|}$,
即有$\frac{3x+4y}{5}$=$\frac{4x+3y}{5}$,
則x=y,又x2+y2=1,
得2x2=1,得x=-$\frac{\sqrt{2}}{2}$,y=-$\frac{\sqrt{2}}{2}$或x=$\frac{\sqrt{2}}{2}$,y=$\frac{\sqrt{2}}{2}$,
即有$\overrightarrow{c}$=$({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$或$({-\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2}})$
故答案為:(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)或($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的坐標(biāo)公式和向量的夾角公式,以及向量的模的公式,單位向量的定義,考查運(yùn)算能力,設(shè)出向量坐標(biāo)建立方程關(guān)系是解決本題的關(guān)鍵..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若a、b∈R,下列4個(gè)命題:①a+b≥2$\sqrt{ab}$;②a5+b5>a3b2+a2b3;③a2+b2≥2(a+b-1);④$\frac{a}$+$\frac{a}$≥2,其中真命題的序號(hào)是③(寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在數(shù)列$\frac{{\sqrt{5}}}{3},\frac{{\sqrt{10}}}{8},\frac{{\sqrt{17}}}{a+b},\frac{{\sqrt{a-b}}}{24},\frac{{\sqrt{37}}}{35},…$中,則實(shí)數(shù)a=$\frac{41}{2}$,b=$\frac{11}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a∈R,解關(guān)于x的方程ax2-(a+2)x+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(3,4),則與$\overrightarrow{a}$方向相同的單位向量是( 。
A.($\frac{4}{5}$,$\frac{3}{5}$)B.($\frac{3}{5}$,$\frac{4}{5}$)C.(-$\frac{3}{5}$-,$\frac{4}{5}$)D.(4,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平面向量$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{2π}{3}$,且$|{\overrightarrow a}$|=2,$\overrightarrow a•\overrightarrow b=-1$,則$|{\overrightarrow b}$|=( 。
A.$\frac{{\sqrt{3}}}{3}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若對(duì)?x,y滿足x>y>m>0,都有ylnx<xlny恒成立,則m的取值范圍是(  )
A.(0,e)B.(0,e]C.[e,e2]D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{ln(x-1)}{{\sqrt{2-x}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,2)B.(1,2]C.(-∞,2]D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有以下命題:
①若f(x)=x3+(a-1)x2+3x+1沒有極值點(diǎn),則-2<a<4;
②集合M={1,2,zi},i為虛數(shù)單位,N={3,4},M∩N={4},則復(fù)數(shù)z=-4i;
③若函數(shù)f(x)=$\frac{lnx}{x}$-m有兩個(gè)零點(diǎn),則m<$\frac{1}{e}$.
其中正確的是②.

查看答案和解析>>

同步練習(xí)冊(cè)答案