3.已知數(shù)列{an}的前n項和為Sn,a1=1,且Sn+1=$\frac{n+1}{n}$Sn+$\frac{n+1}{2}$(n∈N*)
(1)求數(shù)列{an}的通項公式;
(2)設an=2n-1bn(n∈N*),數(shù)列{bn}的前n項和為Tn,若Tn≥k對于n∈N*恒成立,求實數(shù)k的最大值.

分析 (1)由條件可得$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{1}{2}$,運用等差數(shù)列的定義和通項公式,可得Sn=$\frac{n(n+1)}{2}$,再由an=Sn-Sn-1,即可得到所求通項公式;
(2)求得bn=n•($\frac{1}{2}$)n-1,運用數(shù)列的求和方法:錯位相減法,結合等比數(shù)列的求和公式,可得前n項和為Tn,再運用作差法判斷數(shù)列的單調性,求得最小值,即可得到k的最大值.

解答 解:(1)Sn+1=$\frac{n+1}{n}$Sn+$\frac{1}{2}$(n+1),
即有$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{1}{2}$,
可得數(shù)列{$\frac{{S}_{n}}{n}$}是首項為1,公差為$\frac{1}{2}$的等差數(shù)列,
即有$\frac{{S}_{n}}{n}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
則Sn=$\frac{n(n+1)}{2}$,
當n≥2時,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{(n-1)n}{2}$=n,
上式對n=1也成立,
則an=n(n∈N*);
(2)an=2n-1bn(n∈N*),
由(1)可得bn=n•($\frac{1}{2}$)n-1
前n項和為Tn=1•1+2•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1,①
兩邊乘$\frac{1}{2}$,可得$\frac{1}{2}$Tn=1•$\frac{1}{2}$+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,②
①-②可得,$\frac{1}{2}$Tn=1+($\frac{1}{2}$)+($\frac{1}{2}$)2+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n
=$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n,
化簡可得,Tn=4-$\frac{4+2n}{{2}^{n}}$.
Tn≥k對于n∈N*恒成立,即為k≤4-$\frac{4+2n}{{2}^{n}}$的最小值.
由Tn+1-Tn=4-$\frac{2n+6}{{2}^{n+1}}$-(4-$\frac{4+2n}{{2}^{n}}$)=$\frac{n+1}{{2}^{n}}$>0,
數(shù)列{Tn}單調遞增,T1取得最小值1,
可得k≤1.
即有k的最大值為1.

點評 本題考查數(shù)列的通項公式的求法,注意運用當n≥2時,an=Sn-Sn-1,以及等差數(shù)列的定義和通項公式;考查數(shù)列的求和方法:錯位相減法,以及數(shù)列不等式恒成立問題的解法,注意運用數(shù)列的單調性,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.如圖所示,該偽代碼運行的結果為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知銳角△ABC中內角A,B,C所對的邊分別是a,b,c,且滿足$\sqrt{3}$a=2bsinA.
(1)求角B的大。
(2)若b=$\sqrt{7}$,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復數(shù)z=1-i(i是虛數(shù)單位),則$\frac{2}{z}$-z2的共軛復數(shù)是( 。
A.1-3iB.1+3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知α、β都是銳角,且sinα=$\frac{12}{13}$,cos(α+β)=-$\frac{4}{5}$,則cos2β=( 。
A.$\frac{3713}{4225}$B.$\frac{2047}{4225}$C.-$\frac{2047}{4225}$D.-$\frac{3713}{4225}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,A,B,C的對邊分別是a,b,c,且a2sinB+(a2+b2-c2)sinA=0,tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,則A等于(  )
A.$\frac{5π}{24}$B.$\frac{7π}{24}$C.$\frac{5π}{36}$D.$\frac{7π}{36}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知(1+m$\sqrt{x}$)n(m∈R+)展開式的二項式系數(shù)之和為256,展開式中含x項的系數(shù)為112.
(1)求m、n的值;
(2)求(1+m$\sqrt{x}$)n(1-x)展開式中含x2項的系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.定義在(1,+∞)上的函數(shù)f(x)同時滿足:
①對任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;
②當x∈(1,3]時,f(x)=3-x.
記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰好有兩個零點,則實數(shù)k的取值范圍是( 。
A.(2,3)B.[2,3)C.$({\frac{9}{4},3})$D.$[{\frac{9}{4},3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知a,b為實數(shù),f(x)=a•$\sqrt{{x}^{2}+1}$+x2+2bx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,則a+b的取值范圍為[0,8).

查看答案和解析>>

同步練習冊答案