【題目】如圖所示,某地出土的一種“釘”是由四條線段組成,其結(jié)構(gòu)能使它任意拋至水平面后,總有一端所在的直線豎直向上.并記組成該“釘”的四條等長的線段公共點(diǎn)為,釘尖為

(1)判斷四面體的形狀,并說明理由;

(2)設(shè),當(dāng)在同一水平面內(nèi)時(shí),求與平面所成角的大小(結(jié)果用反三角函數(shù)值表示);

(3)若該“釘”著地后的四個(gè)線段根據(jù)需要可以調(diào)節(jié)與底面成角的大小,且保持三個(gè)線段與底面成角相同,若,,問為何值時(shí),的體積最大,并求出最大值.

【答案】1)正四面體;理由見解析(2;(3)當(dāng)時(shí),最大體積為:

【解析】

1)根據(jù)線段等長首先確定為四面體外接球球心;又底面,可知為正三棱錐;依次以為頂點(diǎn)均有正三棱錐結(jié)論出現(xiàn),可知四面體棱長均相等,可知其為正四面體;(2)由為四面體外接球球心及底面可得到即為所求角;設(shè)正四面體棱長為,利用表示出各邊,利用勾股定理構(gòu)造方程可求得,從而可求得,進(jìn)而得到結(jié)果;(3)取中點(diǎn),利用三線合一性質(zhì)可知,從而可用表示出底面邊長和三棱錐的高,根據(jù)三棱錐體積公式可將體積表示為關(guān)于的函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值,并確定此時(shí)的取值,從而得到結(jié)果.

1)四面體為正四面體,理由如下:

四條線段等長,即到四面體四個(gè)頂點(diǎn)距離相等 為四面體外接球的球心

底面 在底面的射影為的外心

四面體為正三棱錐,即,

又任意拋至水平面后,總有一端所在的直線豎直向上,若豎直向上

可得:

可知四面體各條棱長均相等 為正四面體

2)由(1)知,四面體為正四面體,且為其外接球球心

設(shè)中心為,則平面,如下圖所示:

即為與平面所成角

設(shè)正四面體棱長為

中,,解得:

與平面所成角為:

3)取中點(diǎn),連接,

,中點(diǎn)

,

,則

設(shè),,則

,解得:,

當(dāng)時(shí),;當(dāng)時(shí),

當(dāng)時(shí),取極大值,即為最大值:

即當(dāng)時(shí),取得最大值,最大值為:

此時(shí),即

綜上所述,當(dāng)時(shí),體積最大,最大值為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)當(dāng)上的最小值是時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型高端制造公司為響應(yīng)《中國制造2025》中提出的堅(jiān)持“創(chuàng)新驅(qū)動(dòng)、質(zhì)量為先、綠色發(fā)展、結(jié)構(gòu)優(yōu)化、人才為本”的基本方針,準(zhǔn)備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費(fèi)用(百萬元)和產(chǎn)品銷量(萬臺(tái))的具體數(shù)據(jù):

(1)根據(jù)數(shù)據(jù)可知之間存在線性相關(guān)關(guān)系

(i)求出關(guān)于的線性回歸方程(系數(shù)精確到);

(ii)若2018年6月份研發(fā)投人為25百萬元,根據(jù)所求的線性回歸方程估計(jì)當(dāng)月產(chǎn)品的銷量;

(2)公司在2017年年終總結(jié)時(shí)準(zhǔn)備從該年8~12月份這5個(gè)月中抽取3個(gè)月的數(shù)據(jù)進(jìn)行重點(diǎn)分析,求沒有抽到9月份數(shù)據(jù)的概率.

參考數(shù)據(jù): .

參考公式:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集為R,函數(shù)fx)=lg1x)的定義域?yàn)榧?/span>A,集合B{x|x2x60}

(Ⅰ)求AB;

(Ⅱ)若C{x|m1xm+1},CARB)),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購物已經(jīng)成為許多人消費(fèi)的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購物情況,特委托一家網(wǎng)絡(luò)公示進(jìn)行了網(wǎng)絡(luò)問卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到了下表所示數(shù)據(jù):

經(jīng)常進(jìn)行網(wǎng)絡(luò)購物

偶爾或從不進(jìn)行網(wǎng)絡(luò)購物

合計(jì)

男性

50

50

100

女性

60

40

100

合計(jì)

110

90

200

(1)依據(jù)上述數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為該市市民進(jìn)行網(wǎng)絡(luò)購物的情況與性別有關(guān)?

(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機(jī)選出人贈(zèng)送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進(jìn)行網(wǎng)絡(luò)購物的概率;

(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機(jī)抽取人贈(zèng)送禮物,記經(jīng)常進(jìn)行網(wǎng)絡(luò)購物的人數(shù)為,求的期望和方差.

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)镽,的極大值點(diǎn),以下結(jié)論一定正確的是________

,;

的極小值點(diǎn);

的極小值點(diǎn);

的極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.367

0.329

0.308

0.290

(I)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望;

(II)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:

75.3

24.6

18.3

101.4

(i)根據(jù)所給統(tǒng)計(jì)量,求關(guān)于的回歸方程;

(ii)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸為何值時(shí),收益的預(yù)報(bào)值最大? (精確到0.1)

附:對(duì)于樣本, 其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(I)若恒成立,求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)取(I)中的最小值時(shí),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).

(1)求函數(shù)g(x)的定義域;

(2)f(x)是奇函數(shù)且在定義域上單調(diào)遞減,求不等式g(x)0的解集

查看答案和解析>>

同步練習(xí)冊(cè)答案