【題目】對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域為[a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)= x+ ,(x>0)是否為閉函數(shù)?并說明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k﹣ 是閉函數(shù),求正整數(shù)m的最小值,及此時實數(shù)k的取值范圍.
【答案】
(1)解:由題意,y=x3在[a,b]上遞增,在[a,b]上的值域為[a,b],
∴ ,求得 .
所以,所求的區(qū)間[a,b]為[﹣1,1]
(2)解:取 x1=1,x2=10,則f(x1)= < =f(x2),
即f(x)不是(0,+∞)上的減函數(shù).
取 x1= ,x2= ,則f(x1)= +10< +100=f(x2),
即f(x)不是(0,+∞)上的增函數(shù),
所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)
(3)解:函數(shù)y=k﹣ 是閉函數(shù),則存在區(qū)間[a,b],使函數(shù)f(x)的值域為[a,b],
∵函數(shù)y=k﹣ 在區(qū)間[a,b]上單調(diào)遞增,即 ,
∴a,b為方程 的兩個實根,
即方程 在(1,m)上有兩個不等的實根.
由于 ,
考察函數(shù) ,∵函數(shù)g(x)在(1,2)上遞減,∴m>2.
∵g(x)在(2,m)遞增,而函數(shù)y=g(x)與y=k在(1,m)有兩個交點, ,
∵ ,
所以正整數(shù)m的最小值為3,此時,g(3)= ,此時,k的范圍是(5, ).
【解析】(1)由題意,y=x3在[a,b]上遞增,在[a,b]上的值域為[a,b],故有 ,求得a、b的值,可得結(jié)論.(2)取 x1=1,x2=10,則由f(x1)= < =f(x2),可得f(x)不是(0,+∞)上的減函數(shù).同理求得f(x)不是(0,+∞)上的增函數(shù),從而該函數(shù)不是閉函數(shù).(3)由題意,可得方程 在(1,m)上有兩個不等的實根.利用基本不等式求得當(dāng)x=2時,k取得最小值為5.再根據(jù)函數(shù)g(x)在(1,2)上遞減,在(2,m)遞增,而函數(shù)y=g(x)與y=k在(1,m)有兩個交點,可得正整數(shù)m的最小值為3,此時,g(3)= ,由此求得k的范圍.
【考點精析】認(rèn)真審題,首先需要了解函數(shù)的定義域及其求法(求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零),還要掌握函數(shù)單調(diào)性的性質(zhì)(函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有兩個不同的解,求實數(shù)a的范圍.
(II)當(dāng)|f(0)|≤2,|f(1)|≤2時,求|f(x)|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2 , 在x=1處有極大值3,則f(x)的極小值為( )
A.0
B.1
C.2
D.﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)當(dāng)a=1,b=2時,求函數(shù)f(x)(x≠1)的值域,
(2)當(dāng)a=0時,求f(x)<1時,x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x2﹣2x﹣4lnx,則f(x)的單調(diào)遞增區(qū)間為( )
A.(﹣1,0)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行抽獎活動,從裝有編號0,1,2,3四個小球的抽獎箱中,每次取出后放回,連續(xù)取兩次,取出的兩個小球號碼相加之和等于5中一等獎,等于4中二等獎,等于3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的焦點F與拋物線E:y2=4x的焦點重合,直線x-y+=0與以原點O為圓心,以橢圓的離心率e為半徑的圓相切.
(Ⅰ)直線x=1與橢圓交于不同的兩點M,N,橢圓C的左焦點F1,求△F1MN的內(nèi)切圓的面積;
(Ⅱ)直線l與拋物線E交于不同兩點A,B,直線l′與拋物線E交于不同兩點C,D,直線l與直線l′交于點M,過焦點F分別作l與l′的平行線交拋物線E于P,Q,G,H四點.證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com