【題目】等差數(shù)列 中, ,數(shù)列 中, .
(1)求數(shù)列 , 的通項公式;
(2)若 ,求 的最大值.

【答案】
(1)解:設等差數(shù)列 的公差為 .
由題意,可得 ,
整理,得 ,即 ,解得 ,
,故 ,
所以 . .
(2)解:
,
可化為 ,即 ,即 ,
因為 上為增函數(shù),且 ,
所以 的最大值為9
【解析】(1)首先利用等差數(shù)列和等比數(shù)列的通項公式求出公差和公比的值進而得到兩個數(shù)列的通項公式(2)根據(jù)題意整理化簡前n項和公式,再結合等比數(shù)列的求和公式得出結果。
【考點精析】掌握等差數(shù)列的通項公式(及其變式)和等比數(shù)列的通項公式(及其變式)是解答本題的根本,需要知道通項公式:;通項公式:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 的圓心在直線 上,且圓 經(jīng)過點 .
(1)求圓的標準方程;
(2)直線 過點 且與圓 相交,所得弦長為4,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,在三棱錐 中, , 的中點.

(1)求證: ;
(2)設平面 平面 , , ,求二面角 的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行抽樣檢查,測得身高情況的統(tǒng)計圖如圖所示:

(1)估計該校男生的人數(shù);

(2)估計該校學生身高在170185cm的概率;

(3)從樣本中身高在180190cm的男生中任選2人,求至少有1人身高在185190cm的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)等差數(shù)列{an}中,a1+3a8a15=120,求2a9a10的值;

(2)在等差數(shù)列{an}中,a15=8,a60=20,求a75的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用隨機模擬的方法可以估計圖中由曲線與兩直線x=2y=0所圍成的陰影部分的面積S①先產(chǎn)生兩組0~1的均勻隨機數(shù),a=RAND(。b=RAND(。; 做變換,令x=2a,y=2b;③產(chǎn)生N個點(xy),并統(tǒng)計落在陰影內(nèi)的點(xy)的個數(shù),已知某同學用計算機做模擬試驗結果,選取了以下20組數(shù)據(jù)(如圖所示),則據(jù)此可估計S的值為____

x

y

y-0.5*x*x

0.441414481

1.849136261

1.751712889

1.836710045

0.508951247

-1.177800647

1.389538592

0.999398689

0.033989941

0.745446842

1.542498362

1.264652865

0.981548556

1.928476536

1.446757752

1.87036015

1.287100762

-0.462022784

1.20252176

1.271691664

0.548662372

1.931929493

0.920911487

-0.945264297

0.450507939

1.561663263

1.460184562

1.356178263

1.856227093

0.936617353

0.408489063

1.564834147

1.481402489

0.163980707

0.135034106

0.121589269

1.868152447

0.350326824

-1.394669959

0.252753469

1.287326597

1.255384439

1.253648606

1.872701968

1.086884555

0.679831952

0.140283887

-0.090801854

1.544339084

0.804655288

-0.387836316

1.563089931

0.872844524

-0.348780542

1.17458008

0.867440167

0.177620985

1.057219794

1.791271879

1.232415032

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知連續(xù)不斷函數(shù),,

(1)證明:函數(shù)在區(qū)間上有且只有一個零點;

(2)現(xiàn)已知函數(shù)上單調(diào)遞增,且都只有一個零點(不必證明),記三個函數(shù)的零點分別為

求證:Ⅰ);

Ⅱ)判斷的大小,并證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且.

Ⅰ)求橢圓的離心率;

Ⅱ)若過、三點的圓恰好與直線 相切,求橢圓的方程;

III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2
(1)求證:|x1+x2|>2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

同步練習冊答案