【題目】設橢圓: 的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點的圓恰好與直線: 相切,求橢圓的方程;
(III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由
【答案】(1)(2)(3)
【解析】試題分析:(1)設,由,所以,由于,即為的中點,故,即,于是,于是的外接圓圓心為,半徑,該圓與直線相切,則,即可得出值,從而可求橢圓的方程;
(2)由(1)可知,設,聯(lián)立方程組,整理得,寫出韋達定理,由于菱形的對角線垂直,故, 即,即,由已知條件知且,所以,即可求出的取值范圍.
試題解析:
(1)設,由,
知,因為,所以,
由于,即為的中點,
故,所以,即,
于是,于是的外接圓圓心為,半徑,
該圓與直線相切,則,解得,
所以,所求橢圓的方程為.
(2)由(1)可知,
設,聯(lián)立方程組,整理得,
設,則,
,
由于菱形的對角線垂直,故,
故,即,
即,
由已知條件知且,
所以,所以,
故存在滿足題意的點,且的取值范圍是,
當直線的斜率不存在時,不合題意.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明是等比數(shù)列,并求{an}的通項公式;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)當時,解不等式;
(Ⅱ)證明:方程最少有1個解,最多有2個解,并求該方程有2個解時實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com