10.四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,且|$\overrightarrow{AD}$$-\overrightarrow{AB}$|=|$\overrightarrow{AD}$$+\overrightarrow{AB}$|,則四邊形ABCD是( 。
A.平行四邊形B.菱形C.矩形D.正方形

分析 $\overrightarrow{AB}$=$\overrightarrow{DC}$,⇒四邊形ABCD是平行四邊形,∵|$\overrightarrow{AD}$$-\overrightarrow{AB}$|=|$\overrightarrow{AD}$$+\overrightarrow{AB}$|⇒$(\overrightarrow{AD}-\overrightarrow{AB})^{2}=(\overrightarrow{AD}+\overrightarrow{AB})^{2}$⇒$\overrightarrow{AD}•\overrightarrow{AB}=0$⇒AD⊥AB

解答 解:四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,⇒四邊形ABCD是平行四邊形,∵|$\overrightarrow{AD}$$-\overrightarrow{AB}$|=|$\overrightarrow{AD}$$+\overrightarrow{AB}$|⇒$(\overrightarrow{AD}-\overrightarrow{AB})^{2}=(\overrightarrow{AD}+\overrightarrow{AB})^{2}$⇒$\overrightarrow{AD}•\overrightarrow{AB}=0$⇒AD⊥AB
∴則四邊形ABCD是矩形.
故選C.

點(diǎn)評(píng) 本題考查了向量的運(yùn)算法則,及向量的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合A={x|x≥0},且A∩B=B,則集合B可能是(  )
A.{x|x≤1}B.{1,2}C.{-1,0,1 }D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知一個(gè)三棱錐的俯視圖與側(cè)(左)視圖如圖所示,俯視圖是邊長為2的正三角形,側(cè)視圖是有一條直角邊長為1的直角三角形,則該三棱錐的表面積為$4+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知α是第二象限角,設(shè)點(diǎn)P(x,$\sqrt{5}$)是α終邊上一點(diǎn),且cosα=$\frac{\sqrt{2}}{4}$x,則4cos(α+$\frac{π}{2}$)-3tan α=$\sqrt{15}$-$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是在[-1,1]上的單調(diào)遞增函數(shù),且f(m2)>f(m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(Ⅱ)若在區(qū)間[-$\frac{1}{2}$,$\frac{1}{2}$]上,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(理科)在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分;在B處每投進(jìn)一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學(xué)在A處的抽中率q1=0.25,在B處的抽中率為q2,該同學(xué)選擇現(xiàn)在A處投第一球,以后都在B處投,且每次投籃都互不影響,用X表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
X02345
P0.03P2P3P4P5
(1)求q2的值;
(2)求隨機(jī)變量X的數(shù)學(xué)期望E(X);
(3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在B處投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是偶函數(shù),它在(0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是( 。
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(1,+∞)C.($\frac{1}{10}$,10)D.(0,1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在銳角△ABC中,若sinA=$\frac{3}{5}$,AB=5,AC=6,則BC=$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊答案