【題目】某商店為迎接端午節(jié),推出兩款粽子:花生粽和肉粽.為調(diào)查這兩款粽子的受歡迎程度,店員連續(xù)10天記錄了這兩種粽子的銷售量,如下表表示(其中銷售單位:個)
天數(shù) 銷售量 天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
花生粽 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 | 100 |
肉粽 | 88 | 97 | 98 | 95 | 101 | 98 | 103 | 106 | 103 | 111 | 100 |
(1)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖:
(2)統(tǒng)計學(xué)知識,請評述哪款粽子更受歡迎;
(3)求肉粽銷售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第15天肉粽的銷售量(回歸方程系數(shù)精確到0.1)
參考數(shù)據(jù):,參考公式:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1和C2的極坐標方程;
(2)直線l的極坐標方程為,直線l與曲線C1和C2分別交于不同于原點的A,B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標準是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的車費相同的概率;
(Ⅱ)設(shè)甲乙兩人所付的車費之和為隨機變量求的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直線坐標系中,定義為兩點的“切比雪夫距離”,又設(shè)點P及上任意一點Q,稱的最小值為點P到直線的“切比雪夫距離”記作給出下列四個命題:( )
①對任意三點A、B、C,都有
②已知點P(3,1)和直線則
③到定點M的距離和到M的“切比雪夫距離”相等點的軌跡是正方形;
④定點動點滿足則點P的軌跡與直線(為常數(shù))有且僅有2個公共點。
其中真命題的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
點P是曲線C1:(x-2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡為曲線C2.
(Ⅰ)求曲線C1,C2的極坐標方程;
(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點,設(shè)定點M(2,0),求△MAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知直線l過點,它的一個方向向量為.
①求直線l的方程;
②一組直線,,,,,都與直線l平行,它們到直線l的距離依次為d,,,,,(),且直線恰好經(jīng)過原點,試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);
(2)在坐標平面上,是否存在一個含有無窮多條直線,,,,的直線簇,使它同時滿足以下三個條件:①點;②,其中是直線的斜率,和分別為直線在x軸和y軸上的截距;③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體的棱長為1.
正方體中哪些棱所在的直線與直線是異面直線?
若M,N分別是 ,的中點,求異面直線MN與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:
定義學(xué)生對餐廳評價的“滿意度指數(shù)”如下:
分數(shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過餐的學(xué)生中隨機抽取1人進行調(diào)查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com