【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),則對(duì)于函數(shù)有下列四個(gè)命題:
命題1:存在實(shí)數(shù)使得函數(shù)沒有零點(diǎn)
命題2:存在實(shí)數(shù)使得函數(shù)有個(gè)零點(diǎn)
命題3:存在實(shí)數(shù)使得函數(shù)有個(gè)零點(diǎn)
命題4:存在實(shí)數(shù)使得函數(shù)有個(gè)零點(diǎn)
其中,正確的命題的個(gè)數(shù)是( )
A. B. C. D.
【答案】D
【解析】
畫出f(x)圖像,令t=問題轉(zhuǎn)化為a=,即直線y=a與h(t)=交點(diǎn)問題的討論,及t與的交點(diǎn)個(gè)數(shù)問題.
時(shí),有.
單調(diào)遞減;單調(diào)遞增.
.
由題畫出f(x)圖像如圖所示:
令t=則a==,h(t)圖像如圖:
當(dāng)a>時(shí),y=a與y=無(wú)交點(diǎn),所以t=無(wú)解,故命題1正確;
當(dāng)a=-2時(shí),y=-2與y=交點(diǎn)為橫坐標(biāo)為t=-1或t=2,此時(shí)t=-1和t=2分別與y=f(x)有一個(gè)交點(diǎn),即t=有兩個(gè)零點(diǎn),命題2正確;
當(dāng)a=0時(shí),y=0與y=交點(diǎn)橫坐標(biāo)為t=0或t=1,,此時(shí)t=0或t=1分別與y=f(x)有2個(gè)交點(diǎn),即t=共4個(gè)零點(diǎn),命題3正確;
當(dāng)0<a< y=a與y=交點(diǎn)有兩個(gè),橫坐標(biāo)均滿足0<t<1,此時(shí)t與y=f(x)分別有3個(gè)交點(diǎn),即t=有6個(gè)零點(diǎn),故命題4正確
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次會(huì)操活動(dòng)中,領(lǐng)操員讓編號(hào)為的名學(xué)生排成一個(gè)圓形陣,做循環(huán)報(bào)數(shù),領(lǐng)操員一一記錄報(bào)數(shù)者的編號(hào),并要求報(bào)l、2的學(xué)生出列,報(bào)3的學(xué)生留在隊(duì)列中,并將編號(hào)改為此次循環(huán)報(bào)數(shù)中三名學(xué)生的編號(hào)之和.一直循環(huán)報(bào)數(shù)下去.當(dāng)操場(chǎng)上剩余的學(xué)生人數(shù)不超過(guò)兩名時(shí),報(bào)數(shù)活動(dòng)結(jié)束.領(lǐng)操員記錄最后留在操場(chǎng)的學(xué)生編號(hào)(例如,編號(hào)為的九名學(xué)生排成一個(gè)圓形陣,報(bào)數(shù)結(jié)束后,只有原始編號(hào)為9的學(xué)生留在操場(chǎng),此時(shí),他的編號(hào)為45,領(lǐng)操員記錄下來(lái)的數(shù)據(jù)分別為l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名學(xué)生參加會(huì)操.
(1)最后留在場(chǎng)內(nèi)的學(xué)生最初的編號(hào)是幾號(hào)?
(2)求領(lǐng)操員記錄下的編號(hào)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)l為曲線C:在點(diǎn)處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)之外,曲線C在直線l的下方;
(3)求證:(其中,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某知名電商在雙十一購(gòu)物狂歡節(jié)中成交額再創(chuàng)新高,月日單日成交額達(dá)億元.某店主在此次購(gòu)物狂歡節(jié)期間開展了促銷活動(dòng),為了解買家對(duì)此次促銷活動(dòng)的滿意情況,隨機(jī)抽取了參與活動(dòng)的位買家,調(diào)查了他們的年齡層次和購(gòu)物滿意情況,得到年齡層次的頻率分布直方圖和“購(gòu)物評(píng)價(jià)為滿意”的年齡層次頻數(shù)分布表.年齡層次的頻率分布直方圖:
“購(gòu)物評(píng)價(jià)為滿意”的年齡層次頻數(shù)分布表:
年齡(歲) | |||||
頻數(shù) |
(1)估計(jì)參與此次活動(dòng)的買家的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表);
(2)若年齡在歲以下的稱為“青年買家”,年齡在歲以上(含歲)的稱為“中年買家”,完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為中、青年買家對(duì)此次活動(dòng)的評(píng)價(jià)有差異?
評(píng)價(jià)滿意 | 評(píng)價(jià)不滿意 | 合計(jì) | |
中年買家 | |||
青年買家 | |||
合計(jì) |
附:參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件是隨機(jī)事件的是( 。
①當(dāng)x>10時(shí),; ②當(dāng)x∈R,x2+x=0有解
③當(dāng)a∈R關(guān)于x的方程x2+a=0在實(shí)數(shù)集內(nèi)有解; ④當(dāng)sinα>sinβ時(shí),α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將“馬”“上”“成”“功”這四個(gè)字填在一個(gè)5×5的方格表中,每個(gè)小方格內(nèi)至多填1個(gè)字,“馬”“上”始終按從左往右的順序填寫,“成”“功”也始終按從左往右的順序填寫,且“馬”“上”必須在同一行或按從上往下的順序在同一列,或者“成”“功”必須在同一行或按從上往下的順序在同一列。則不同的填法種數(shù)為_______(用數(shù)字作答)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)ae2x+(a﹣2) ex﹣x.
(1)討論的單調(diào)性;
(2)若有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com