9.已知a∈{-2,0,1,3,4},b∈{1,2},則函數(shù)f(x)=xlna+b為增函數(shù)的概率是$\frac{2}{5}$.

分析 由函數(shù)f(x)=xlna+b為增函數(shù),得a>1,由此能求出f(x)=xlna+b為增函數(shù)的概率.

解答 解:∵函數(shù)f(x)=xlna+b為增函數(shù),
∴a>1,
∵a∈{-2,0,1,3,4},b∈{1,2},
∴f(x)=xlna+b為增函數(shù)的概率p=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查函數(shù)為增函數(shù)的概率,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.方程9x+|3x+b|=5(b∈R)有一個(gè)正實(shí)數(shù)解,則b的取值范圍為(  )
A.(-5,3)B.(-5.25,-5)C.[-5,5)D.前三個(gè)都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}•\overrightarrow{OB}$=2,
(1)求|$\overrightarrow{OA}+\overrightarrow{OB}$|
(2)若點(diǎn)C滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a2+a5+a8=15,那么S9=(  )
A.40B.45C.50D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知等比數(shù)列{an}滿足a2=$\frac{1}{4}$,a2•a8=4(a5-1),則a4+a5+a6+a7+a8=( 。
A.20B.31C.62D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.經(jīng)過(guò)原點(diǎn)并且與直線x+y-2=0相切于點(diǎn)(2,0)的圓的標(biāo)準(zhǔn)方程是( 。
A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=2C.(x-1)2+(y+1)2=4D.(x+1)2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O為△ABC的外心,點(diǎn)M(不與點(diǎn)O重合)為邊AC的中點(diǎn),且$\overrightarrow{AO}$=x•$\overrightarrow{AB}$+y•$\overrightarrow{AM}$,|AB|=3,|AC|=4,若x+y=1,則cos∠BAC=( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=-cosx-1的最大值是( 。
A.1B.0C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.△ABC中,B=60°,最大邊與最小邊的比為$\frac{{\sqrt{3}+1}}{2}$,則△ABC的最大角為( 。
A.60°B.75°C.90°D.105°

查看答案和解析>>

同步練習(xí)冊(cè)答案