【題目】某面包店推出一款新面包,每個(gè)面包的成本價(jià)為4元,售價(jià)為10元,該款面包當(dāng)天只出一爐(一爐至少15個(gè),至多30個(gè)),當(dāng)天如果沒有售完,剩余的面包以每個(gè)2元的價(jià)格處理掉.為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個(gè)),整理得下表:
日需求量 | 15 | 18 | 21 | 24 | 27 |
頻數(shù) | 10 | 8 | 7 | 3 | 2 |
(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為24,記當(dāng)日這款新面包獲得的總利潤為(單位:元).
(i)若日需求量為15個(gè),求;
(ii)求的分布列及其數(shù)學(xué)期望.
【答案】(1) (2)(i)72 (ii)分布列見解析,元.
【解析】
(1)求出,,,,由此能求出關(guān)于的線性回歸方程.
(2)(i)若日需求量為15個(gè),能求出元.
(ii)若日需求量為18個(gè),則元,若日需求量為21個(gè),則元,若日需求量為24個(gè)或27個(gè),則元,由此能求出的分布列和.
解:(1),
,
,
,
∴關(guān)于的線性回歸方程為.
(2)(i)若日需求量為15個(gè),則元.
(ii)若日需求量為18個(gè),則元,
若日需求量為21個(gè),則元,
若日需求量為24個(gè)或27個(gè),則元,
∴的分布列為:
72 | 96 | 120 | 144 | |
元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有若干撲克牌:6張牌面分別是2,3,4,5,6,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為;若每次取后不放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為,則( )
A.B.C.D.以上三種情況都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①中,是成立的充要條件;
②當(dāng)時(shí),有;
③已知 是等差數(shù)列的前n項(xiàng)和,若,則;
④若函數(shù)為上的奇函數(shù),則函數(shù)的圖象一定關(guān)于點(diǎn)成中心對(duì)稱.其中所有正確命題的序號(hào)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A、B兩點(diǎn)的坐標(biāo)分別為(0,1)、(0,﹣1),動(dòng)點(diǎn)P滿足直線AP與直線BP的斜率之積為,直線AP、BP與直線y=﹣2分別交于點(diǎn)M、N.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求線段MN的最小值;
(3)以MN為直徑的圓是否經(jīng)過某定點(diǎn)?若經(jīng)過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不經(jīng)過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),.
(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(2)已知,,若對(duì)任意都成立,求的最大值;
(3)設(shè),若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+
(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計(jì) | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
參考公式及數(shù)據(jù):,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com