己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn≤¨對(duì)恒成立,求實(shí)數(shù)的最小值.
(1)(2)
解析試題分析:(1)求等差數(shù)列通項(xiàng)公式基本方法為待定系數(shù)法,即求出首項(xiàng)與公差即可,將題中兩個(gè)條件:
前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列轉(zhuǎn)化為關(guān)于首項(xiàng)與公差的方程組解出即得,(2)本題先求數(shù)列的前n項(xiàng)和,這可利用裂項(xiàng)相消法,得到 ,然后對(duì)恒成立問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,即分離變量為對(duì)恒成立,所以,從而轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)最值,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/86/3/qxuv.png" style="vertical-align:middle;" />,所以
試題解析:(1)設(shè)公差為d.由已知得 3分
解得,所以 6分
(2),
9分
對(duì)恒成立,即對(duì)恒成立
又
∴的最小值為 12分
考點(diǎn):等差數(shù)列通項(xiàng),裂項(xiàng)相消求和,不等式恒成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)記的前項(xiàng)和為,若成等比數(shù)列,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項(xiàng),使其成等差數(shù)列?說(shuō)明理由;
(2)若a1=1,且對(duì)任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項(xiàng).
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若=,設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4,
(1)求{an}的通項(xiàng)公式;
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3·a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項(xiàng)公式an.
(2)若數(shù)列{bn}是等差數(shù)列,且bn=,求非零常數(shù)c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式 (2)令,求數(shù)列前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知{an}為等差數(shù)列,且a2=-1,a5=8.
(1)求數(shù)列{|an|}的前n項(xiàng)和;
(2)求數(shù)列{2n·an}的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com