雙曲線
x2
a2
-
y2
b2
=1的右焦點到漸近線的距離是其到左頂點距離的一半,則雙曲線的離心率e=
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的左頂點以及右焦點,以及漸近線方程,運用兩點的距離公式和點到直線的距離公式,列出a、b、c關(guān)系式,然后由離心率公式即可計算得到.
解答: 解:雙曲線
x2
a2
-
y2
b2
=1的右焦點為(c,0),左頂點為(-a,0),
右焦點到雙曲線漸近線bx-ay=0的距離為:
|bc|
a2+b2
=
bc
c
=b,
右焦點(c,0)到左頂點為(-a,0)的距離為:a+c,
由題意可得,b=
1
2
(a+c),
即有4b2=a2+c2+2ac,即4(c2-a2)=a2+c2+2ac,
即3c2-5a2-2ac=0,
由e=
c
a
,則有3e2-2e-5=0,
解得,e=
5
3

故答案為:
5
3
點評:本題考查雙曲線的離心率的求法,點到直線的距離公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象經(jīng)過點(0,-3),且f(4)=f(-2)=5,
(1)求f(x)的解析式
(2)若x∈[0,3],求函數(shù)f(x)對應(yīng)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx-|1-x2|(m∈R),若f(x)在區(qū)間(0,2)上有且只有1個零點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標系中,點(4,-1,2)與原點的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,bc為實數(shù),則下列命題中正確的是( 。
A、若a>b,則ac2>bc2
B、若a<b,則a+c<b+c
C、若a<b,則ac<bc
D、若a<b,則
1
a
1
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點A(-1,1),B(3,3).
(1)求直線AB的方程;
(2)求線段AB的垂直平分線l的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,銳角三角形ABC是一塊鋼板的余料,邊BC=24cm,BC邊上的高AD=12cm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,則這個正方形零件的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖算法最后輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,該三棱錐的體積為
 

查看答案和解析>>

同步練習(xí)冊答案