分析 BE、CF的交點為O,連接EF,則O點為△ABC的重心,有EF=$\frac{a}{2}$,OE=$\frac{BE}{3}$,OF=$\frac{CF}{3}$,可得BE2=$\frac{1}{4}$(2a2+2c2-b2),CF2=$\frac{1}{4}$(2a2+2b2-c2),可求得OE2+OF2=EF2從而可得OE⊥OF,即可得BE與CF的位置關系.
解答 解:設BE、CF的交點為O,連接EF,則O點為△ABC的重心,
∴EF=$\frac{a}{2}$,OE=$\frac{BE}{3}$,OF=$\frac{CF}{3}$,
根據中線定理可知:BE2=$\frac{1}{4}$(2a2+2c2-b2),CF2=$\frac{1}{4}$(2a2+2b2-c2),
所以OE2+OF2=($\frac{BE}{3}$)2+($\frac{CF}{3}$)2=$\frac{1}{36}$(2a2+2c2-b2)+$\frac{1}{36}$(2a2+2b2-c2)=$\frac{1}{36}$(4a2+b2+c2)=$\frac{1}{36}$(4a2+5a2)=$\frac{1}{4}$a2=EF2
所以OE⊥OF,
即BE⊥CF,
所以以O為坐標原點,OE,OF分別為x,y軸,建立坐標系,可得BE⊥CF.
點評 本題主要考查了余弦定理的應用,三角形的解法,屬于基本知識的考查.
科目:高中數學 來源: 題型:選擇題
A. | (0,$\frac{π}{3}$] | B. | [$\frac{π}{6}$,π) | C. | [$\frac{π}{3}$,π) | D. | (0,$\frac{π}{6}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
食物類型 | 甲 | 乙 | 丙 |
維生素C(單位/kg) | 300 | 500 | 300 |
維生素D(單位/kg) | 700 | 100 | 300 |
成本(元/kg) | 5 | 4 | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {0,2,3} | B. | {1,2,3} | C. | {0,1,2} | D. | {0,1,3} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com