1.方程組:$\left\{\begin{array}{l}{y=mx+1}\\{{x}^{2}-\frac{{y}^{2}}{3}=1}\end{array}\right.$有解,m的取值范圍是-2≤m≤2.

分析 聯(lián)立方程,消去y可得(3-m2)x2-2mx-4=0,分類討論,利用判別式,即可確定m的取值范圍.

解答 解:聯(lián)立方程,消去y可得(3-m2)x2-2mx-4=0,
3-m2=0,即m=±$\sqrt{3}$時(shí),方程有解;
3-m2≠0,△=4m2+16(3-m2)≥0,即m≠±$\sqrt{3}$且-2≤m≤2時(shí),方程有解;
綜上所述,-2≤m≤2.
故答案為:-2≤m≤2.

點(diǎn)評(píng) 本題考查直線與雙曲線的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)點(diǎn)(x,y)在不等式組$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y-4≤0\end{array}\right.$所表示的平面區(qū)域上,若對(duì)于b∈[0,1]時(shí),不等式ax-by>b恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在公差為正數(shù)的等差數(shù)列{an}中,若a10+a11<0,且a10a11<0,Sn是其前n項(xiàng)和,則使Sn<0的n的最大值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的奇函數(shù)f(x)滿足f(x)=-f(x+$\frac{3}{2}$),f(-1)=1,則f(1)+f(2)+f(3)+…+f(2009)=(  )
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.給出下列敘述:
①若關(guān)于x的不等式$\frac{ax-1}{x+1}$<0的解集是(-∞,-1)∪(-$\frac{1}{2}$,+∞),則a=-2;
②若x>0,y>0,且$\frac{1}{x}$+$\frac{9}{y}$=1,則x+y的最小值為16;
③已知a,b,c,d為實(shí)數(shù),且c>d,若a>b,則a-c>b-d;
④函數(shù)y=loga(x+3)-1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A的坐標(biāo)滿足方程mx+ny+1=0,其中mn>0,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為4.
其中所有正確敘述的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.實(shí)數(shù)x,y滿足x2+y2-4y+3=0,則$\frac{y}{x}$的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,$\sqrt{3}$]C.[-$\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知loga$\frac{4}{3}$>1,則a的取值范圍是( 。
A.0<a<1B.a>1C.1<a<$\frac{4}{3}$D.a>$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知一次函數(shù)f(x)=(-k2+3k+4)x+2,則實(shí)數(shù)k應(yīng)滿足的條件是k≠-1,k≠4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx,$g(x)=-x-\frac{a}{x}(a≠0)$,設(shè)F(x)=f(x)+g(x),
(1)當(dāng)a=2時(shí),求函數(shù)F(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=F(x)(x∈(0,1])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率記為k,且k≤1恒成立,求實(shí)數(shù)a的最大值;
(3)是否存在實(shí)數(shù)m,使得函數(shù)$y=g(\frac{2a}{{{x^2}+1}})+\frac{2a}{{{x^2}+1}}+m-1$的圖象與函數(shù)$y=-f(x)-2x-\frac{2}{x}$的圖象恰有三個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案