A. | (1,2] | B. | (1,$\frac{e+1}{2}$] | C. | (1,$\frac{2e}{3}$] | D. | (1,2) |
分析 把存在唯一的整數(shù)x0,使得f(x0)>1,轉(zhuǎn)化為存在唯一的整數(shù)x0,使得$\frac{{x}_{0}}{{e}^{{x}_{0}}}-a{x}_{0}+a>1$,即$\frac{{x}_{0}}{{e}^{{x}_{0}}}>a{x}_{0}-a+1$.令g(x)=$\frac{x}{{e}^{x}}$,h(x)=ax-a+1,求得分析g(x)的單調(diào)性,作g(x)=$\frac{x}{{e}^{x}}$,h(x)=ax-a+1的圖象,數(shù)形結合得到$\left\{\begin{array}{l}{h(0)=1-a<0}\\{a≥\frac{1-(-e)}{2}}\end{array}\right.$,則答案可求.
解答 解:f(x)=$\frac{x}{{e}^{x}}$-ax+a,若存在唯一的整數(shù)x0,使得f(x0)>1,
即存在唯一的整數(shù)x0,使得$\frac{{x}_{0}}{{e}^{{x}_{0}}}-a{x}_{0}+a>1$,也就是存在唯一的整數(shù)x0,使得$\frac{{x}_{0}}{{e}^{{x}_{0}}}>a{x}_{0}-a+1$.
令g(x)=$\frac{x}{{e}^{x}}$,h(x)=ax-a+1,
∵g′(x)=$\frac{{e}^{x}-x{e}^{x}}{{e}^{2x}}=\frac{1-x}{{e}^{x}}$,
∴g(x)=$\frac{x}{{e}^{x}}$在(-∞,1]上是增函數(shù),在(1,+∞)上是減函數(shù),
又∵h(x)=ax-a+1是恒過點(1,1)的直線,
∴作g(x)=$\frac{x}{{e}^{x}}$,h(x)=ax-a+1的圖象如下,
則$\left\{\begin{array}{l}{h(0)=1-a<0}\\{a≥\frac{1-(-e)}{2}}\end{array}\right.$,即1$<a≤\frac{e+1}{2}$.
故選:B.
點評 本題考查利用導數(shù)研究函數(shù)的單調(diào)性,考查根的存在性及根的個數(shù)判斷,體現(xiàn)了數(shù)形結合的解題思想方法,是壓軸題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com