分析 變形a+b=$\frac{1}{2}$(2+a+a+2b)-1=$\frac{1}{2}$(2+a+a+2b)$(\frac{2}{2+a}+\frac{1}{a+2b})$-1=$\frac{1}{2}(3+\frac{2(a+2b)}{2+a}+\frac{2+a}{a+2b})$-1,再利用基本不等式的性質(zhì)即可得出.
解答 解:a+b=$\frac{1}{2}$(2+a+a+2b)-1=$\frac{1}{2}$(2+a+a+2b)$(\frac{2}{2+a}+\frac{1}{a+2b})$-1=$\frac{1}{2}(3+\frac{2(a+2b)}{2+a}+\frac{2+a}{a+2b})$-1≥$\frac{1}{2}(3+2\sqrt{\frac{2(a+2b)}{2+a}×\frac{2+a}{a+2b}})$-1=$\frac{1}{2}+\sqrt{2}$,當(dāng)且僅當(dāng)a=$\sqrt{2}$,b=$\frac{1}{2}$時取等號.
故答案分別為:$\sqrt{2}+\frac{1}{2}$;$\sqrt{2}$.
點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=lnx | B. | y=cosx | C. | y=-x2 | D. | $y={({\frac{1}{2}})^x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 7或9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com