9.空間四邊形ABCD中,E、F分別是AB和BC上的一點(diǎn),若AE:EB=CF:FB=1:3,則對(duì)角線AC與平面DEF的位置關(guān)系是( 。
A.平行B.相交C.AC在平面DEF內(nèi)D.不能確定

分析 根據(jù)比例式得到EF∥AC,繼而得到線面平行,問題得以解決.

解答 解:∵AE:EB=CF:FB=1:3,
∴EF∥AC,
∵EF?平面DEF,AC?平面DEF,
∴AC∥平面DEF,
故選:A.

點(diǎn)評(píng) 本題考查空間中直線與干線之間的位置關(guān)系,解題的關(guān)鍵是掌握空間中直線與直線之間位置關(guān)系的判斷方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)滿足$f(x)=\sqrt{\frac{kx-1}{x-1}}$,(k>0).
(1)討論函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在區(qū)間[10,+∞)上是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)關(guān)于x的方程ax2+(a+2)x+9a=0 有兩個(gè)不等實(shí)根x1,x2,且x1<1<x2,那么a的取值范圍是( 。
A.($\frac{2}{7}$,$\frac{2}{5}$)B.($\frac{2}{5}$,+∞)C.(-∞,$\frac{2}{7}$)D.(-$\frac{2}{11}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=1-$\frac{m}{{{5^x}+1}}$是奇函數(shù).
(1)求m的值;
(2)證明:f(x)是R上的增函數(shù)
(6)當(dāng)x∈[-1,2),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.直三棱柱ABC-A1B1C1的各頂點(diǎn)都在同一球面上BC=$\sqrt{3}$,AA1=2,∠BAC=120°,則此球的表面積等于20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知實(shí)數(shù)m和2n的等差中項(xiàng)是4,實(shí)數(shù)2m和n的等差中項(xiàng)是5,則m和n的等差中項(xiàng)是( 。
A.2B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)F1和F2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),若F1、F2、P(0,2b)是正三角形的三個(gè)頂點(diǎn),則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,透明塑料制成的長(zhǎng)方體容器A1B1C1D1-ABCD內(nèi)灌進(jìn)一些水,固定容器底面一邊BC于地面上,再將容器傾斜,隨著傾斜度的不同,有下面五個(gè)命題,真命題的有(1)(3)(4)(5).
(1)沒有水的部分始終呈棱柱形;
(2)水面EFGH所在四邊形的面積為定值;
(3)棱A1D1始終與水面所在平面平行;
(4)當(dāng)容器任意傾斜時(shí),水面可以是六邊形;
(5)當(dāng)容器任意傾斜時(shí),水面可以是五邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式組$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$,表示的平面區(qū)域的面積為$\frac{121}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案