已知函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)有且僅有三個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)的最大值為α,.則( )

A.A>B B.A<B

C.A=B D.A與B的大小不確定

 

C

【解析】

試題分析:作出函數(shù)f(x)=|sinx|的圖象,利用函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)有且僅有三個(gè)交點(diǎn),確定切點(diǎn)坐標(biāo),然后利用三角函數(shù)的關(guān)系即可得到結(jié)論.

【解析】
作出函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)的圖象,如圖所示,要使兩個(gè)函數(shù)有且僅有三個(gè)交點(diǎn),

則由圖象可知,直線在()內(nèi)與f(x)相切.

設(shè)切點(diǎn)為A(α,﹣sinα),

當(dāng)x∈()時(shí),f(x)=|sinx|=﹣sinx,

此時(shí)f'(x)=﹣cosx,x∈().

∴﹣cos,即α=tanα,

==

即A=B.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐S-ABCD的用斜二測(cè)畫(huà)法畫(huà)出的直觀圖如圖所示,底面A′B′C′D′是一個(gè)平行四邊形,其中∠B′A′D′=45°,A′B′=2cm,A′D′=1cm,直觀圖的高為3cm,則四棱錐S-ABCD的體積為( 。
A、2cm3
B、4cm3
C、
14
3
cm3
D、6cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

底面直徑為12cm的圓柱被與底面成30°的平面所截,截口是一個(gè)橢圓,該橢圓的長(zhǎng)軸長(zhǎng) ,短軸長(zhǎng) ,離心率為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:填空題

(2010•嘉興一模)如圖所示.△ABC內(nèi)接于⊙O,若∠OAB=28°,則∠C的大小是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

圖中∠BOD的度數(shù)是( )

A.55° B.110° C.125° D.150°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

下列表述:①綜合法是執(zhí)因?qū)Ч;②綜合法是順推法;③分析法是執(zhí)果索因法;

④分析法是間接證法;⑤反證法是逆推法.正確的語(yǔ)句有( )

A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

以下說(shuō)法正確的是( )

A.在用綜合法證明的過(guò)程中,每一個(gè)分步結(jié)論都是結(jié)論成立的必要條件

B.在用綜合法證明的過(guò)程中,每一個(gè)分步結(jié)論都是條件成立的必要條件

C.在用分析法證明的過(guò)程中,每一個(gè)分步結(jié)論都是條件成立的充分條件

D.在用分析法證明的過(guò)程中,每一個(gè)分步結(jié)論都是結(jié)論成立的必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

證明命題:“f(x)=ex+在(0,+∞)上是增函數(shù)”,現(xiàn)給出的證法如下:

因?yàn)閒(x)=ex+,所以f′(x)=ex﹣,

因?yàn)閤>0,所以ex>1,0<<1,

所以ex﹣>0,即f′(x)>0,

所以f(x)在(0,+∞)上是增函數(shù),使用的證明方法是( )

A.綜合法 B.分析法 C.反證法 D.以上都不是

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:[同步]2014年北師大版選修1-2 3.2數(shù)學(xué)證明練習(xí)卷(解析版) 題型:選擇題

(2014•揭陽(yáng)三模)對(duì)于正實(shí)數(shù)α,Mα為滿足下述條件的函數(shù)f(x)構(gòu)成的集合:?x1,x2∈R且x2>x1,有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1).下列結(jié)論中正確的是( )

A.若f(x)∈Mα1,g(x)Mα2,則f(x)•g(x)∈Mα1•α2

B.若f(x)∈Mα1,g(x)∈Mα2,且g(x)≠0,則

C.若f(x)∈Mα1,g(x)∈Mα2,則f(x)+g(x)∈Mα1+α2

D.若f(x)∈Mα1,g(x)∈Mα2,且α1>α2,則f(x)﹣g(x)∈Mα1﹣α2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案