已知命題p:x>y;則-x<-y;命題q:若x<y;則x2<y2;在命題 ①p∧q,②p∨q,③p∧(¬q),④(¬p)∨q中,真命題是( 。
A、①③B、①④C、②③D、②④
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:根據(jù)不等式的性質(zhì)分別判定命題p,q的真假,利用復(fù)合命題之間的關(guān)系即可得到結(jié)論
解答: 解:根據(jù)不等式的性質(zhì)可知,若x>y,則-x<-y成立,即p為真命題,
當(dāng)x=1,y=-1時(shí),滿足x>y,但x2>y2不成立,即命題q為假命題,
則①p∧q為假命題;②p∨q為真命題;③p∧(¬q)為真命題;④(¬p)∨q為假命題,
故選:C
點(diǎn)評(píng):本題主要考查復(fù)合命題之間的關(guān)系,根據(jù)不等式的性質(zhì)分別判定命題p,q的真假是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:實(shí)數(shù)x滿足x2+ax-2a2<0,命題q:實(shí)數(shù)x滿足x2+2x-8<0,且¬p是¬q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)滿足:?a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a).
(1)用定義證明:f(x)是R上的增函數(shù);
(2)設(shè)x,y為正實(shí)數(shù),若
4
x
+
9
y
=4試比較f(x+y)與f(6)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
e1
,
e2
是夾角為60°的單位向量,且
a
=2
e1
+
e2
,
b
=-3
e1
+2
e2

(1)求
a
b
;    
(2)求
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-|x3-2x2+x|(x<1)
lnx(x≥1)
,若命題“?t∈R,且t≠0,使得f(t)≥kt”是假命題,則正實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
AB
=(2,4),
CB
=(-1,3),則
AC
等于( 。
A、(3,1)
B、(2,-1)
C、(-1,2)
D、(-1,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
滿足|
a
|=2,|
b
|=3,
a
、
b
的夾角為60°,則|2
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
lim
n→∞
n
n+2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,1),
e1
=
a
+2
b
,
e2
=2
a
-
b
,且
e1
e2
,求x.

查看答案和解析>>

同步練習(xí)冊(cè)答案