12.如圖是一正方體的表面展開圖,MN和PB是兩條面對角線,則在正方體中,直線MN與直線PB的位置關(guān)系為( 。
A.相交B.平行C.異面D.重合

分析 把正方體的表面展開圖還原成正方體,由此能求出直線MN與直線PB的位置關(guān)系.

解答 解:把正方體的表面展開圖還原成正方體,如圖,
∵M(jìn)N∥BD,PB∩BD=B,
∴直線MN與直線PB異面.
故選:C.

點(diǎn)評 本題考查兩直線的位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意正方體的結(jié)構(gòu)特征的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若a<b,則a-1≤b”的逆否命題為( 。
A.若a-1≥b,則a>bB.若a-1≤b,則a≥bC.若a-1>b,則a>bD.若a-1>b,則a≥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知公差d≠0的等差數(shù)列{an}滿足a1=2,且a1,a2,a5成等比數(shù)列
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)記Sn為數(shù)列{an}的前n項(xiàng)和,求使得Sn>60n+800成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求證:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線2x+y-5=0與x-2y=0交于點(diǎn)P,直線l:3x-y-7=0.求:
(1)過點(diǎn)P與直線l平行的直線方程;
(2)過點(diǎn)P與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1)證明:AD⊥BC;
(2)求三棱錐D-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ex+x-5.,則f(x)的零點(diǎn)所在區(qū)間為(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列說法中,正確的是( 。
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為假命題
B.“x>3”是“x>2”的必要不充分條件
C.命題“p或q”為真命題,¬p為真,則命題q為假命題
D.命題“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一質(zhì)點(diǎn)做直線運(yùn)動(dòng),在x(單位:s)時(shí)離出發(fā)點(diǎn)的距離(單位:m)為f(x)=$\frac{2}{3}$x3+x2+2x.
(1)求質(zhì)點(diǎn)在第1s內(nèi)的平均速度;
(2)求質(zhì)點(diǎn)在第1s末的瞬時(shí)速度;
(3)經(jīng)過多長時(shí)間質(zhì)點(diǎn)的運(yùn)動(dòng)速度達(dá)到14m/s?

查看答案和解析>>

同步練習(xí)冊答案