16.正整數(shù)a、b滿足1<a<b,若關(guān)于x、y的方程組$\left\{\begin{array}{l}{y=-2x+4033}\\{y=|x-1|+|x-a|+|x-b|}\end{array}\right.$有且只有一組解,則a的最大值為4031.

分析 化簡可得4033-2x=|x-1|+|x-a|+|x-b|,從而討論以去掉絕對值號,并確定方程的解的個(gè)數(shù)及條件,從而解得.

解答 解:由方程組消y可得,
4033-2x=|x-1|+|x-a|+|x-b|,
當(dāng)x≤1時(shí),
4033-2x=1-x-x+a-x+b,
故x=b+a-4032,
故當(dāng)b+a≤4033時(shí),有一個(gè)解;
即a≤4031時(shí),有一個(gè)解;否則無解;
當(dāng)1<x≤a時(shí),
4033-2x=x-1-x+a-x+b,
故x=4034-a-b,
故當(dāng)-a<4032-a-b≤1,即b<4032且a+b≥4301時(shí),有一個(gè)解;
即2015≤a≤4030,有一個(gè)解,
否則無解;
當(dāng)1<x≤b時(shí),
4033-2x=x+a+b-1,
故3x=4034-a-b,
故當(dāng)3<4034-a-b≤3b,即a+b<4031且a+4b≥4304時(shí),有一個(gè)解;
即$\frac{4300}{5}$≤a≤2014,方程有一個(gè)解,
否則無解;
當(dāng)x>b時(shí),
4033-2x=3x+a-b-1,
故5x=4034-a+b,
故當(dāng)4034-a+b>5b,即a+4b<4304時(shí),有一個(gè)解;
否則無解;
綜上所述,
當(dāng)a取最大值4031時(shí),方程有一個(gè)解,
故答案為:4031.

點(diǎn)評 本題考查了絕對值方程的解法及分類討論的思想方法應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且(Sn-1)2=anSn(n∈N).
(1)求S1,S2,S3的值,并求出Sn及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)n+1(n+1)2•anan+1(n∈N),求數(shù)列{bn}的前n項(xiàng)和Tn
(3)設(shè)cn=(n+1)•an(n∈N*),在數(shù)列{cn}中取出m(m∈N*,m≥3為常數(shù))項(xiàng),按照原來的順序排成一列,構(gòu)成等比數(shù)列{dn},若對任意的數(shù)列{dn},均有d1+d2+d3+…+dn≤M,試求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}滿足an=6-$\frac{9}{{a}_{n-1}}$(n∈N*,n≥2).
(1)求證:數(shù)列{$\frac{1}{{a}_{n}-3}$}是等差數(shù)列;
(2)若a1=6,求數(shù)列{|lgan|}的前999項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.長時(shí)間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的身體健康,某中學(xué)為了解A、B兩班學(xué)生手機(jī)上網(wǎng)的時(shí)長,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)的時(shí)長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì),哪個(gè)班的學(xué)生平均上網(wǎng)時(shí)間較長;
(Ⅱ)從A、B班的樣本數(shù)據(jù)中各隨機(jī)抽取一個(gè)不超過20的數(shù)據(jù)分別記為a,b,求a≤b的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等差數(shù)列{an}中,a3=2,a6=5,則數(shù)列{${2}^{{a}_{n}}$}的前5項(xiàng)和等于( 。
A.15B.31C.63D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某企業(yè)2014年年底給全部的800名員工共發(fā)放2000萬元年終獎(jiǎng),該企業(yè)計(jì)劃從2015年起,10年內(nèi)每年發(fā)放的年終獎(jiǎng)都比上一年增加60萬元,企業(yè)員工每年凈增a人.
(1)若a=10,在10年內(nèi),該企業(yè)的人均年終獎(jiǎng)是否會超過3萬元?
(2)這10年內(nèi)為使人均年終獎(jiǎng)年年有增長,該企業(yè)每年員工的凈增量不能超過多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從2,3,4,5,6這5個(gè)數(shù)字中任取3個(gè),則所得3個(gè)數(shù)之和為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在股票買賣過程中,經(jīng)常用兩種曲線來描述價(jià)格變化情況:一種是即時(shí)價(jià)格曲線y=f(x),另一種是平均價(jià)格曲線y=g(x),如f(3)=4表示開始交易后第3小時(shí)的即時(shí)價(jià)格為4元;g(3)=2表示開始交易后三個(gè)小時(shí)內(nèi)所有成交股票的平均價(jià)格為2元.下面給出四個(gè)圖象,實(shí)線表示y=f(x),虛線表示y=g(x),其中可能正確的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,an>0(n∈N),S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3an+2n-7,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn及Tn的最小值.

查看答案和解析>>

同步練習(xí)冊答案