【題目】等差數(shù)列中,,.若記表示不超過的最大整數(shù),(如).令,則數(shù)列的前2000項和為__________.
【答案】5445.
【解析】分析:設(shè)等差數(shù)列{an}的公差為d,由a3+a4=12,S7=49.可得2a1+5d=12,d=49,解出即可得出; bn=[lgan]=[lg(2n﹣1)],n=1,2,3,4,5時,bn=0.6≤n≤50時,bn=1;51≤n≤500時,bn=2;501≤n≤2000時,bn=3.即可得出.
詳解:設(shè)等差數(shù)列{an}的公差為d,∵a3+a4=12,S7=49.
∴2a1+5d=12,d=49,
解得a1=1,d=2.
∴an=1+2(n﹣1)=2n﹣1.
bn=[lgan]=[lg(2n﹣1)],
n=1,2,3,4,5時,bn=0.
6≤n≤50時,bn=1;
51≤n≤500時,bn=2;
501≤n≤2000時,bn=3.
∴數(shù)列{bn}的前2000項和=45+450×2+1500×3=5445.
故答案為:5445.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形中,,分別是上的點,,且(如圖①).將四邊形沿折起,連接(如圖②).在折起的過程中,下列說法中錯誤的個數(shù)是( )
①平面;
②四點不可能共面;
③若,則平面平面;
④平面與平面可能垂直.
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】( 2013湖南)某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰 好“相近”的概率;
(2)在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個極值點x1 , x2(x1<x2)( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4﹣4:坐標系與參數(shù)方程)
在直角坐標系xOy中,橢圓C的參數(shù)方程為 為參數(shù),a>b>0).在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l與圓O的極坐標方程分別為 為非零常數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點,且與圓O相切,則橢圓C的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一名數(shù)學(xué)老師對全班50名學(xué)生某次考試成績分男女生進行統(tǒng)計(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如圖所示的兩個頻率分布直方圖:
(1)根據(jù)以上兩個直方圖完成下面的列聯(lián)表:
性別 成績 | 優(yōu)秀 | 不優(yōu)秀 | 總計 |
男生 | |||
女生 | |||
總計 |
(2)根據(jù)(1)中表格的數(shù)據(jù)計算,你有多大把握認為學(xué)生的數(shù)學(xué)成績與性別之間有關(guān)系?
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(I)求張同學(xué)至少取到1道乙類題的概率;
(II)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學(xué)答對題的個數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當 時,求函數(shù)f(x)在[0,k]上的最大值M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當x∈R,|x|<1時,有如下表達式:1+x+x2+…+xn+…=
兩邊同時積分得: dx+ xdx+ x2dx+…+ xndx+…= dx
從而得到如下等式:1× + ×( )2+ ×( )3+…+ ×( )n+1+…=ln2
請根據(jù)以上材料所蘊含的數(shù)學(xué)思想方法,計算:
× + ×( )2+ ×( )3+…+ ×( )n+1= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com