【題目】( 2013湖南)某人在如圖所示的直角邊長(zhǎng)為4米的三角形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn)以及三角形頂點(diǎn))處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗(yàn),一株該種作物的年收獲Y(單位:kg)與它的“相近”作物株數(shù)X之間的關(guān)系如下表所示:

X

1

2

3

4

Y

51

48

45

42

這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰 好“相近”的概率;
(2)在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.

【答案】
(1)解:所種作物總株數(shù)N=1+2+3+4+5=15,其中三角形地塊內(nèi)部的作物株數(shù)為3,邊界上的作物株數(shù)為12,從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株的不同結(jié)果有 =36種,選取的兩株作物恰好“相近”的不同結(jié)果有3+3+2=8,∴從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好“相近”的概率為 = ;
(2)解:先求從所種作物中隨機(jī)選取一株作物的年收獲量為Y的分布列

∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)

∴只需求出P(X=k)(k=1,2,3,4)即可

記nk為其“相近”作物恰有k株的作物株數(shù)(k=1,2,3,4),則n1=2,n2=4,n3=6,n4=3

由P(X=k)= 得P(X=1)= ,P(X=2)= ,P(X=3)= = ,P(X=4)= =

∴所求的分布列為

Y

51

48

45

42

P

數(shù)學(xué)期望為E(Y)=51× +48× +45× +42× =46


【解析】(1)確定三角形地塊的內(nèi)部和邊界上的作物株數(shù),分別求出基本事件的個(gè)數(shù),即可求它們恰好“相近”的概率;(2)確定變量的取值,求出相應(yīng)的概率,從而可得年收獲量的分布列與數(shù)學(xué)期望.
【考點(diǎn)精析】利用離散型隨機(jī)變量及其分布列對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為上的動(dòng)點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了實(shí)現(xiàn)綠色發(fā)展,避免能源浪費(fèi),某市計(jì)劃對(duì)居民用電實(shí)行階梯收費(fèi).階梯電價(jià)原則上以住宅(一套住宅為一戶)的月用電量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯電量

第二階梯電量

第三階梯電量

月用電量范圍(單位:

從本市隨機(jī)抽取了100戶,統(tǒng)計(jì)了今年6月份的用電量,這100戶中用電量為第一階梯的有20戶,第二階梯的有60戶,第三階梯的有20.

(1)現(xiàn)從這100戶中任意選取2戶,求至少1戶用電量為第二階梯的概率;

(2)以這100戶作為樣本估計(jì)全市居民的用電情況,從全市隨機(jī)抽取3戶,表示用電量為第二階梯的戶數(shù),求的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣ )+cos(x﹣ ),g(x)=2sin2
(1)若α是第一象限角,且f(α)= ,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中,)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點(diǎn)()

A. 向右平移個(gè)單位長(zhǎng)度B. 向左平移個(gè)單位長(zhǎng)度

C. 向右平移個(gè)單位長(zhǎng)度D. 向左平移個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列中,,.若記表示不超過的最大整數(shù),(如).令,則數(shù)列的前2000項(xiàng)和為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是()

A. 銳角是第一象限的角,所以第一象限的角都是銳角;

B. 如果向量,則;

C. 中,記,,則向量可以作為平面ABC內(nèi)的一組基底;

D. ,都是單位向量,則.

查看答案和解析>>

同步練習(xí)冊(cè)答案