f(x)=
x
1-x
在( 。
A、(-∞,1)∪(1,+∞)上是增函數(shù)
B、(-∞,1)∪(1,+∞)上是減函數(shù)
C、(-∞,1),(1,+∞)分別是增函數(shù)
D、(-∞,1),(1,+∞)分別是減函數(shù)
考點:函數(shù)單調(diào)性的判斷與證明
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:將f(x)變量分離得f(x)=-1-
1
x-1
,將y=
-1
x
的圖象向右平移1個單位,可得y=-
1
x-1
的圖象,再向下平移1個單位,即可得到f(x)的圖象,則有f(x)在x>1,x<1上均為增函數(shù),即可得到結(jié)論.
解答: 解:f(x)=
x
1-x
=-
x
x-1

=-1-
1
x-1

由函數(shù)y=
-1
x
在x>0,x<0均為增函數(shù),
則將y=
-1
x
的圖象向右平移1個單位,可得y=-
1
x-1
的圖象,
再向下平移1個單位,即可得到f(x)的圖象,
則有f(x)在x>1,x<1上均為增函數(shù),
則有函數(shù)f(x)的增區(qū)間為(-∞,1),(1,+∞).無減區(qū)間.
故選C.
點評:本題考查函數(shù)的單調(diào)區(qū)間,考查圖象的平移規(guī)律,考查運算能力,屬于基礎(chǔ)題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(2x+3)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三種顏色的卡片,分別寫有a,b,c,d,e,從中取5張,三種顏色都有的取法(字母不用各不相同)有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將一副三角板拼接,使他們有公共邊BC,且使這兩個三角形所在的平面互相垂直,∠BAC=∠CBD=90°,AB=AC,∠BCD=30°,BC=6.
(1)證明:平面ADC⊥平面ADB;
(2)求二面角A-CD-B平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABED是矩形,四邊形ADGC是梯形,AD⊥平面DEFG,EF∥DG,∠EDG=120°.
(Ⅰ)證明:FG⊥平面ADF;
(Ⅱ)求二面角A-CG-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(0<φ<π),y=f(x)圖象的一條對稱軸是直線x=
π
8

(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠BAC=
π
3
且BC=
3
.若E為BC的中點,則AE的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(1-3i)z=10i,則z等于( 。
A、-1-3iB、3-i
C、1+3iD、-3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等比數(shù)列{an}前三項之積為8,且這三項分別加上1、2、2后又成等差數(shù)列.
(1)求等比數(shù)列{an}的通項公式;
(2)記bn=an+2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案