【題目】已知函數(shù),,,其中為正實數(shù),為自然對數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使得對任意給定的,在區(qū)間上總存在兩個不同的,,使得成立?若存在,求出正實數(shù)的取值范圍;若不存在,請說明理由.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為與,單調(diào)遞減區(qū)間為與;(2)存在,.
【解析】
(1)求出導(dǎo)函數(shù),由確定增區(qū)間,由確定減區(qū)間;
(2)由(1)求出的圖象與在區(qū)間上至少有兩個交點的的取值范圍,函數(shù)的值域就是這個范圍的子集.由此可得.
解:(1),.
當(dāng),即時,或,
當(dāng),即時,或.
∴函數(shù)的單調(diào)遞增區(qū)間為與,單調(diào)遞減區(qū)間為與.
(2)由(1)可知,函數(shù)有兩個極小值,,,
存在一個極大值大致作出函數(shù)圖像(只反映單調(diào)性)可知:
對于函數(shù),,假設(shè)存在滿足題意的實數(shù).
當(dāng)時,由,得.
由題意,解得.
所以,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,若對于,,使得成立,則稱集合M是“互垂點集”.給出下列四個集合:;;;.其中是“互垂點集”集合的為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)長期統(tǒng)計分析,某貨物每天的需求量在17與26之間,日需求量(件)的頻率分布如下表所示:
需求量 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
頻率 | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本為每件5元,售價為每件10元.若供大于求,則每件需降價處理,處理價每件2元.假設(shè)每天的進(jìn)貨量必需固定.
(1)設(shè)每天的進(jìn)貨量為,視日需求量的頻率為概率,求在每天進(jìn)貨量為的條件下,日銷售量的期望值(用表示);
(2)在(1)的條件下,寫出和的關(guān)系式,并判斷為何值時,日利潤的均值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論函數(shù)的單調(diào)性;
(2)設(shè),是否存在實數(shù),對任意,,,有恒成立?若存在,求出的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓C:的離心率是,拋物線E:的焦點F是C的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線:交于,兩點,且的面積為16(為坐標(biāo)原點).
(1)求的方程.
(2)直線經(jīng)過的焦點且不與軸垂直,與交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,梯形中,,,,為的中點,將沿翻折,構(gòu)成一個四棱錐,如圖2.
(1)求證:異面直線與垂直;
(2)求直線與平面所成角的大小;
(3)若三棱錐的體積為,求點到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com