圓x2+y2=2x+2y上到直線x+y+1=0的距離為
2
的點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):直線與圓的位置關(guān)系
專(zhuān)題:計(jì)算題,直線與圓
分析:將圓方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑,求出圓心到已知直線的距離,判斷即可得到圓上到直線x+y+1=0的距離為
2
的點(diǎn)得到個(gè)數(shù).
解答: 解:圓方程變形得:(x-1)2+(y-1)2=2,即圓心(1,1),半徑r=
2

∴圓心到直線x+y+1=0的距離d=
1
2
=
2
2
,
∴r-d=
2
2
2
,
則到圓上到直線x+y+1=0的距離為
2
的點(diǎn)得到個(gè)數(shù)為2個(gè),
故選:B.
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,以及點(diǎn)到直線的距離公式,弄清題意是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市圖書(shū)館有三部電梯,每位乘客選擇哪部電梯到閱覽室的概率都是
1
3
.現(xiàn)有5位乘客準(zhǔn)備乘電梯到閱覽室.
(1)求5位乘客選擇乘同一部電梯到閱覽室的概率;
(2)若記5位乘客中乘第一部電梯到閱覽室的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知α和β是關(guān)于x的方程3x2-5x+a=0的兩個(gè)實(shí)數(shù)根,若-2>α>0,1<β<3,求α取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,對(duì)于任意的n∈N*,都有
an+2-an+1
an+1-an
=k(k為常數(shù)),則稱(chēng){an}為“等差比數(shù)列”.下面對(duì)“等差比數(shù)列”的判斷:
①k不可能為0;
②等差數(shù)列一定是“等差比數(shù)列”;
③等比數(shù)列一定是“等差比數(shù)列”;
④通項(xiàng)公式為an=a•bn+c(a≠0,b≠0,1)的數(shù)列一定是“等差比數(shù)列”;
⑤等差比數(shù)列中可以有無(wú)數(shù)項(xiàng)為0.
其中正確的個(gè)數(shù)是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一家醫(yī)藥研究所,從中草藥中提取并合成了甲、乙兩種抗“H病毒”的藥物,經(jīng)試驗(yàn),服用甲、乙兩種藥物痊愈的概率分別為
1
2
1
3
,現(xiàn)已進(jìn)入藥物臨床試用階段,每個(gè)試用組由4位該病毒的感染者組成,其中2人試用甲種抗病毒藥物,2人試用乙種抗病毒藥物,如果試用組中,甲種抗病毒藥物治愈人數(shù)人數(shù)超過(guò)乙種抗病毒藥物的治愈人數(shù),則稱(chēng)該組為“甲類(lèi)組”,
(1)求一個(gè)試用組為“甲類(lèi)組”的概率;
(2)觀察3個(gè)試用組,用η表示這3個(gè)試用組中“甲類(lèi)組”的個(gè)數(shù),求η的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|2≤x≤3},定義在集合A上的函數(shù)y=logax(a>0,a≠1)的最大值與最小值的和是2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+y+
2
=0截圓x2+y2=4所得劣弧所對(duì)圓心角為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)[x]表示不超過(guò)x的最大整數(shù),如:[π]=3,[-3.7]=-4.給出以下命題:
①若x1≤x2,則[x1]≤[x2];
②[lg1]+[lg2]+[lg3]+…+[lg2015]=4938;
③若x≥0,則可由[2sinx]=[
1
x
]解得x的范圍為[
π
6
,1)∪(
6
,π];
④函數(shù)f(x)=
2x
1+2x
-
1
2
,則函數(shù)[f(x)]+[f(-x)]的值域?yàn)閧0,-1};
你認(rèn)為以上正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P為圓C:(x-1)2+y2=4上任意一點(diǎn),點(diǎn)Q的坐標(biāo)為(4a,a+3),則PQ長(zhǎng)度的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案