【題目】如圖,在底面為直角梯形的四棱錐, 平面,,.

(1)求證: 平面

(2)求二面角的大小.

【答案】(1)證明見(jiàn)解析;(2).

【解析】試題分析:(1)連接交于,平面,可得,可得,,即從而根據(jù)線面垂直的判定定理可得平面;(2) 連接平面,為二面角的平面角,根據(jù)直角三角形的性質(zhì)可得,進(jìn)而可得二面角的大小.

試題解析:(1)連接交于,平面,平面

,

,,即

平面

(2)連接平面,為二面角的平面角.

中,,,二面角的大小為

【方法點(diǎn)晴】本題主要考查線面垂直的判定定理及二面角的求法,屬于難題.解答空間幾何體中垂直關(guān)系時(shí),一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時(shí)要正確運(yùn)用有關(guān)的定理,找出足夠的條件進(jìn)行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個(gè)平面垂直時(shí),在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:

同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)?/span>;

同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);

同學(xué)丙發(fā)現(xiàn):對(duì)于任意的都有

同學(xué)丁發(fā)現(xiàn):對(duì)于任意的,都有

同學(xué)戊發(fā)現(xiàn):對(duì)于函數(shù)定義域中任意的兩個(gè)不同實(shí)數(shù),總滿足.

其中所有正確研究成果的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求函數(shù)y=的值的程序框圖如圖所示.

(1)指出程序框圖中的錯(cuò)誤,并寫(xiě)出算法;

(2)重新繪制解決該問(wèn)題的程序框圖,并回答下面提出的問(wèn)題.

要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?

要使輸出的值為8,輸入的x值應(yīng)是多少?

要使輸出的y值最小,輸入的x值應(yīng)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義“三角戀寫(xiě)法”為“三個(gè)人之間寫(xiě)信,每人給另外兩人之一寫(xiě)一封信,且任意兩個(gè)人不會(huì)彼此給對(duì)方寫(xiě)信”,若五個(gè)人a,b,c,d,e中的每個(gè)人都恰給其余四人中的某一個(gè)人寫(xiě)了一封信,則不出現(xiàn)“三角戀寫(xiě)法”寫(xiě)法的寫(xiě)信情況的種數(shù)為(
A.704
B.864
C.1004
D.1014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)舉行一次知識(shí)競(jìng)賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段、現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)

頻數(shù)(人數(shù))

頻率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100)

合計(jì)

50

1


(1)填充頻率分布表中的空格(在解答中直接寫(xiě)出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng).如果前三道題都答錯(cuò),就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同. ①求該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是等邊三角形,側(cè)面AA1B1B為正方形,且AA1⊥平面ABC,D為線段AB上的一點(diǎn).
(Ⅰ)若BC1∥平面A1CD,確定D的位置,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求二面角A1D﹣C﹣BC1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣5|﹣|x﹣2|.
(1)若x∈R,使得f(x)≤m成立,求m的范圍;
(2)求不等式x2﹣8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x∈[﹣1,0],θ∈[0,2π),二元函數(shù) 取最小值時(shí),x=x0 , θ=θ0則(
A.4x00=0
B.4x00<0
C.4x00>0
D.以上均有可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,
(1)若 ,求 的最大值;
(2)若 恒成立,求實(shí)數(shù) 的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案