【題目】在△ABC中,3sinA+4cosB=6,3cosA+4sinB=1,則∠C的大小為 .
【答案】
【解析】解:由3sinA+4cosB=6①,3cosA+4sinB=1②, ①2+②2得:(3sinA+4cosB)2+(3cosA+4sinB)2=37,
化簡得:9+16+24(sinAcosB+cosAsinB)=37,
即sin(A+B)=sin(π﹣C)=sinC= ,又∠C∈(0,π),
∴∠C的大小為 或 ,
若∠C= π,得到A+B= ,則cosA> ,所以3cosA> >1,
∴3cosA+4sinB>1與3cosA+4sinB=1矛盾,所以∠C≠ π,
∴滿足題意的∠C的值為 .
則∠C的大小為 .
所以答案是:
【考點精析】解答此題的關鍵在于理解余弦定理的定義的相關知識,掌握余弦定理:;;.
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和Sn , 首項a1=a,公比為q(q≠0且q≠1).
(1)推導證明:Sn= ;
(2)等比數(shù)列{an}中,是否存在連續(xù)的三項:ak、ak+1、ak+2 , 使得這三項成等差數(shù)列?若存在,求出符合條件的等比數(shù)列公比q的值,若不存在,說明理由;
(3)本題中,若a=q=2,已知數(shù)列{nan}的前n項和Tn , 是否存在正整數(shù)n,使得Tn≥2016?若存在,求出n的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,若圓C的圓心在第一象限,圓C與x軸相交于A(1,0)、B(3,0)兩點,且與直線x﹣y+1=0相切,則圓C的標準方程為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點,且.
(1)求二面角的大小;
(2)在側(cè)棱SC上是否存在一點E,使得平面?若存在,求 的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的一個焦點與的焦點重合,點在橢圓上.
(1)求橢圓的方程;
(2)設直線: ()與橢圓交于兩點,且以為對角線的菱形的一頂點為,求面積的最大值(為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校用簡單隨機抽樣方法抽取了30名同學,對其每月平均課外閱讀時間(單位:小時)進行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時間不低于30小時的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校900名學生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時間相差不超過2小時的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,前m(m為奇數(shù))項的和為77,其中偶數(shù)項之和為33,且a1﹣am=18,則數(shù)列{an}的通項公式為an= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), ().
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極大值,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上的點到點的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)過點且斜率為的直線交曲線于, 兩點,若,當時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com