3.已知f(x)=x2+x-1,求f(2x-1)

分析 直接把2x-1代入已知解析式即可得出結(jié)論.

解答 解:∵f(x)=x2+x-1,
∴f(2x-1)=(2x-1)2+(2x-1)-1=4x2-2x-1.

點評 本題考查函數(shù)解析式的求解及常用方法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過拋物線y2=2x的焦點F作直線交拋物線于A(x1,y1)、B(x2,y2)兩點,若x1+x2=4,則|AB|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.5顆骰子同時擲出,共擲100次則至少一次出現(xiàn)全為6點的概率為(  )
A.[1-($\frac{5}{6}$)5]100B.[1-($\frac{5}{6}$)100]5C.1-[1-($\frac{1}{6}$)100]5D.1-[1-($\frac{1}{6}$)5]100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(cosA-cosC,sinB),$\overrightarrow{n}$=(cosB,sinA-sinC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(1)若a2+c2+ac=b2,求A;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=20,且a≠c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知0<x<2,當(dāng)x取什么值時,函數(shù)f(x)=$\sqrt{x(3-x)}$的值最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若M是△ABC的邊BC上一點,且$\overrightarrow{CM}=3\overrightarrow{MB},設(shè)\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.化簡$\overrightarrow{OP}$+$\overrightarrow{PS}$-$\overrightarrow{QP}$+$\overrightarrow{SP}$=( 。
A.$\overrightarrow{QP}$B.$\overrightarrow{OQ}$C.$\overrightarrow{SP}$D.$\overrightarrow{SQ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果log5a+log5b=2,則a+b的最小值是(  )
A.25B.10C.5D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l1:3x+2y-1=0和l2:5x+2y+1=0的交點為A
(1)若直線l3:(a2-1)x+ay-1=0與l1平行,求實數(shù)a的值;
(2)求經(jīng)過點A,且在兩坐標(biāo)軸上截距相等的直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案