【題目】根據(jù)幼兒身心發(fā)展的特征,幼兒園通常著重在健康、科學、社會、語言、藝術五大領域對幼兒展開全方位的教育和培養(yǎng).經(jīng)調查發(fā)現(xiàn),一個幼兒除了在幼兒園進行五大領域的系統(tǒng)學習之外,還會報一些課外興趣班.而家長朋友們對于是否額外報這些課外興趣班的態(tài)度也是不一樣的.某調查機構對某幼兒園的100名幼兒家長就孩子是否報課外興趣班的贊同程度進行調查統(tǒng)計,得到家長對幼兒報課外興趣班贊同度的頻數(shù)分布表:
贊同度 | |||||
家長數(shù) | 2 | 12 | 14 | 28 | 44 |
(1)分別計算對幼兒報興趣班的贊同度不低于的家長比例和對幼兒報興趣班的贊同度低于的家長比例;
(2)求家長對幼兒報興趣班的贊同度的平均數(shù)與方差的估計值.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替)
科目:高中數(shù)學 來源: 題型:
【題目】手機運動計步已經(jīng)成為一種新時尚.某單位統(tǒng)計了職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:
(1)求直方圖中a的值,并由頻率分布直方圖估計該單位職工一天步行數(shù)的中位數(shù);
(2)若該單位有職工200人,試估計職工一天行走步數(shù)不大于13000的人數(shù);
(3)在(2)的條件下,該單位從行走步數(shù)大于15000的3組職工中用分層抽樣的方法選取6人參加遠足拉練活動,再從6人中選取2人擔任領隊,求這兩人均來自區(qū)間(150,170]的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據(jù)測量,在同一時刻測得, .(船只與無人機的大小及其它因素忽略不計)
(1)求此時無人機到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.
(1)求的分布列及數(shù)學期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有1000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調查,將計劃在今年購買5G手機的員工稱為“追光族",計劃在明年及明年以后才購買5G手機的員工稱為“觀望者”,調查結果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(1)完成下列列聯(lián)表,并判斷是否有95%的把握認為該公司員工屬于“追光族"與“性別"有關;
屬于“追光族" | 屬于“觀望者" | 合計 | |
女性員工 | |||
男性員工 | |||
合計 | 100 |
(2)已知被抽取的這100名員工中有10名是人事部的員工,這10名中有3名屬于“追光族”.現(xiàn)從這10名中隨機抽取3名,記被抽取的3名中屬于“追光族”的人數(shù)為隨機變量X,求的分布列及數(shù)學期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解學生假期參與志愿服務活動的情況,隨機調查了名男生,名女生,得到他們一周參與志愿服務活動時間的統(tǒng)計數(shù)據(jù)如右表(單位:人):
超過小時 | 不超過小時 | |
男 | ||
女 |
(1)能否有的把握認為該校學生一周參與志愿服務活動時間是否超過小時與性別有關?
(2)以這名學生參與志愿服務活動時間超過小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機抽查名學生,試估計這名學生中一周參與志愿服務活動時間超過小時的人數(shù).
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)絡已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調查機構進行了有關網(wǎng)購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)
經(jīng)常網(wǎng)購 | 偶爾或不用網(wǎng)購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關?
(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;
②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com