9.已知A、B、C、D四點(diǎn)的坐標(biāo)分別是A(3,0),B(0,3),C(sinα,cosα),D(1,1).
(Ⅰ)若|AC|=|BC|,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值;
(Ⅱ)若|CD|2=$\frac{5}{3}$,求$\frac{si{n}^{2}α+sinαcosα}{1+tanα}$的值.

分析 (Ⅰ)利用線段長(zhǎng)度相等,建立三角方程,即可求tanα=1,利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)所求即可計(jì)算求值得解.
(Ⅱ)利用|CD|2=$\frac{5}{3}$,求出sinα+cosα=$\frac{2}{3}$,從而可得sinαcosα的值,利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)所求即可.

解答 解:(Ⅰ)由題意,∵|AC|=|BC|,
∴|AC|2=|BC|2,即(sinα-3)2+cos2α=sin2α+(cosα-3)2…(2分)
化簡(jiǎn)得sinα=cosα,
∴tanα=1,…(4分)
∵tanα=1,
∴$\begin{array}{l}\frac{4sinα-2cosα}{5cosα+3sinα}=\frac{4tanα-2}{5+3tanα}…(5分)\\=\frac{2}{8}=\frac{1}{4}…(6分)\end{array}$
(Ⅱ)由|CD|2=$\frac{5}{3}$,得:(sinα-1)2+(cosα-1)2=$\frac{5}{3}$,
化簡(jiǎn)得:sinα+cosα=$\frac{2}{3}$,…(8分)
于是:sinαcosα=$\frac{1}{2}$[(sinα+cosα)2-1]=-$\frac{5}{18}$.…(10分)
$\begin{array}{l}∴\frac{{{{sin}^2}α+sinαcosα}}{1+tanα}=\frac{sinα(sinα+cosα)}{{\frac{cosα+sinα}{cosα}}}\\=sinαcosα…(11分)\\=-\frac{5}{18}…(12分)\end{array}$

點(diǎn)評(píng) 本題主要考查向量的基本運(yùn)算以及向量和三角函數(shù)的綜合運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.sin(-510°)=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知(x-1)n的二項(xiàng)展開式的奇數(shù)項(xiàng)二項(xiàng)式系數(shù)和為64,若(x-1)n=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,則a1等于(  )
A.192B.448C.-192D.-448

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在四面體A-BCD中,AB=AD=CD=2,CB=4,面ABD⊥面CBD,CD⊥BD,則四面體A-BCD的體積為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在平面和圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)設(shè)幾何體F-ABCD、F-BCE的體積分別為V1、V2,求V1:V2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z1滿足z1•i=1+i (i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2.
(1)求z1;
(2)復(fù)數(shù)z1z2是純虛數(shù)時(shí),比較|z1|與|z2|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某微信群中甲、乙、丙、丁、戊五名成員同時(shí)搶4個(gè)紅包,每人最多搶一個(gè)紅包,且紅包全被搶光,4個(gè)紅包中有兩個(gè)2元,兩個(gè)3元(紅包中金額相同視為相同的紅包),則甲乙兩人都搶到紅包的情況有18種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知cos(α-$\frac{β}{2}$)=-$\frac{1}{9}$,sin($\frac{α}{2}$-β)=$\frac{2}{3}$,且0<β<$\frac{π}{2}$<α<π,則sin$\frac{α+β}{2}$=$\frac{22}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1-x)5(3+2x)9=a0(x+1)14+a1(x+1)13+…+a13(x+1)+a14,求:
(1)a0+a1+…+a14的值;
(2)a1+a3+…a13的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案