(12分)拋物線的頂點在坐標原點,焦點在軸的負半軸上,過點作直線與拋物線交于A,B兩點,且滿足,
(1)求拋物線的方程
(2)當拋物線上的一動點P從A運動到B時,求面積的的最大值.

(1)  (2)

解析試題分析:(1)設(shè)直線的方程為與拋物線聯(lián)立消去,解得                
(2)底確定當高最大時面積最大,此時的高就是平行于AB且與拋物線相切的直線和直線AB間的距離設(shè)直線方程為利用相切條件即
于是
考點:直線和拋物線的位置關(guān)系及數(shù)形結(jié)合法求最值
點評:直線和圓錐曲線的位置關(guān)系通常聯(lián)立方程利用韋達定理

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點在軸的異側(cè),端點、的橫坐標分別相等,縱坐標分別同號.

(Ⅰ)若弦所在直線斜率為,且弦的中點的橫坐標為,求直線的方程;
(Ⅱ)若弦過定點,試探究弦是否也必過某個定點. 若有,請證明;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為.
①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)河上有一拋物線型拱橋,當水面距拱頂5時,水面寬為8,一小船寬4,高2,載貨后船露出水面上的部分高,問水面上漲到與拋物線拱頂相距多少米時,小船恰好能通行。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,設(shè)是圓上的動點,點D是軸上的投影,M為D上一點,且
(Ⅰ)當的在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓G:的右焦點F為,G上的點到點F的最大距離為,斜率為1的直線與橢圓G交與、兩點,以AB為底邊作等腰三角形,頂點為P(-3,2)
(1)求橢圓G的方程;
(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題13分)曲線上任意一點M滿足, 其中F(-F( 拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同
兩點,且滿足?若存在,求出直線的方程;若不
存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方, 
(1)求橢圓C的的方程;
(2)求點P的坐標;
(3)設(shè)M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)已知拋物線C:過點A
(1)求拋物線C 的方程;
(2)直線過定點,斜率為,當取何值時,直線與拋物線C只有一個公共點。

查看答案和解析>>

同步練習冊答案