【題目】對于各項均為整數(shù)的數(shù)列,如果滿足)為完全平方數(shù),則稱數(shù)列具有“性質(zhì)”;不論數(shù)列是否具有“性質(zhì)”,如果存在與不是同一數(shù)列的,且同時滿足下面兩個條件:①的一個排列;②數(shù)列具有“性質(zhì)”,則稱數(shù)列具有“變換性質(zhì)”.

(Ⅰ)設(shè)數(shù)列的前項和,證明數(shù)列具有“性質(zhì)”;

(Ⅱ)試判斷數(shù)列和數(shù)列是否具有“變換性質(zhì)”,具有此性質(zhì)的數(shù)列請寫出相應(yīng)的數(shù)列,不具此性質(zhì)的說明理由;

(Ⅲ)對于有限項數(shù)列,某人已經(jīng)驗證當)時,數(shù)列具有“變換性質(zhì)”,試證明:當時,數(shù)列也具有“變換性質(zhì)”.

【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析.

【解析】試題分析:由題意知,所以是完全平方數(shù),數(shù)列具有性質(zhì);()由題設(shè)條件知:數(shù)列具有變換性質(zhì),數(shù)列,數(shù)列不具有變換性質(zhì),所以數(shù)列不具有變換性質(zhì);()設(shè),令,則,由此可知當時,數(shù)列也具有變換性質(zhì)”.

試題解析:)當時, ,

,所以 .

所以)是完全平方數(shù),數(shù)列具有“M性質(zhì)”.

)數(shù)列具有變換M性質(zhì)

數(shù)列.

數(shù)列不具有變換M性質(zhì)”.

, 都只有與的和才能構(gòu)成完全平方數(shù),

數(shù)列不具有變換M性質(zhì)”.

)設(shè), ,

注意到,

,

,

,

, ,

,即.

∵當)時,數(shù)列具有變換M性質(zhì),

可以排列成,使得都是平方數(shù);

另外, , ,, 可以按相反順序排列,即排列為,, , ,

使得 ,

,

可以排成

滿足都是平方數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有極值,且在處的切線與直線垂直.

(1)求實數(shù)的取值范圍;

(2)是否存在實數(shù),使得函數(shù)的極小值為.若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是圓柱體的母線, 是底面圓的直徑, 分別是的中點, .

(1)求證: 平面;

(2)求點到平面的距離;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線與圓 交于兩點.

(1)若,求直線的方程;

(2)軸上是否存在定點,使得當變動時,總有直線的斜率之和為0?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的焦點為,準線為,點在拋物線上,已知以點為圓心, 為半徑的圓兩點.

(Ⅰ)若, 的面積為4,求拋物線的方程;

(Ⅱ)若三點在同一條直線上,直線平行,且與拋物線只有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(男,人),給所有同學幾何題和代數(shù)題各一題,讓各位同學只能自由選擇其中一道題進行解答.選題情況如下表(單位:人)

幾何題

代數(shù)題

總計

男同學

22

8

30

女同學

8

12

20

總計

30

20

50

幾何題

代數(shù)題

總計

男同學

22

8

30

女同學

8

12

20

總計

30

20

50

1能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關(guān)?

2現(xiàn)從選擇做幾何題的名女生中,任意抽取兩人,對她們的答題情況進行全程研究,記甲、乙兩位女生被抽到的人數(shù)為,求的分布列和.

附表及公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某校高中男生中隨機選取100名學生,將他們的體重(單位: )數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

1)估計該校的100名同學的平均體重(同一組數(shù)據(jù)以該組區(qū)間的中點值作代表);

2若要從體重在 , 三組內(nèi)的男生中,用分層抽樣的方法選取6人組成一個活動隊,再從這6人中選2人當正副隊長,求這2人中至少有1人體重在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場做促銷活動,凡是一家三口一起來商場購物的家庭,均可參加返現(xiàn)活動,活動規(guī)則如下:商家在箱中裝入20個大小相同的球,其中6個是紅球,其余都是黑球;每個家庭只能參加一次活動,參加活動的三口人,每人從中任取一球,只能取一次,且每人取球后均放回;若取到黑球則獲得4元返現(xiàn)金,若取到紅球則獲得12元返現(xiàn)金.若某家庭參與了該活動,則該家庭獲得的返現(xiàn)金額的期望是( ).

A. 22.4 B. 21.6 C. 20.8 D. 19.2

查看答案和解析>>

同步練習冊答案