19.設(shè)x>0,y∈R,則“x>y”是“x>|y|”的必要不充分條件.

分析 根據(jù)充要條件的定義,逐一分析“x>y”⇒x>|y|”和“x>|y|”⇒“x>y”的真假,可得答案.

解答 解:當(dāng)x=1,y=-2時,“x>y”成立,但“x>|y|”不成立,
故“x>y”是“x>|y|”的不充分條件,
當(dāng)“x>|y|”時,若y≤0,“x>y”顯然成立,
若y>0,則“x>|y|=y”,即“x>y”成立,
故“x>y”是“x>|y|”的必要條件,
故“x>y”是“x>|y|”的必要不充分條件,
故答案為:必要不充分.

點評 本題考查的知識點是充要條件的定義,正確理解充要條件的定義是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a-c)cosB=bcosC.
(Ⅰ) 求角B的大小;
(Ⅱ) 設(shè)$\vec m$=(sinA,cos2A),$\vec n$=(4k,1)(k>1),且$\vec m$•$\vec n$的最大值是7,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等比數(shù)列{an}中,已知a1=$\frac{1}{5}$,a3=5,則a2=(  )
A.1B.3C.±1D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,直二面角A-BD-C,平面ABD⊥平面BCD,若其中給定 AB=AD=2,∠BAD=90°,∠BDC=60°,BC⊥CD.
(Ⅰ)求AC與平面BCD所成的角;
(Ⅱ)求點A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知F1、F2是橢圓C的兩個焦點,P為橢圓上一點,若$\overrightarrow{P{F}_{1}}$⊥$\overrightarrow{P{F}_{2}}$,且△PF1F2的面積和周長均為為16,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知光線經(jīng)過已知直線l1:3x-y+7=0和l2:2x+y+3=0的交點M,且射到x軸上一點N(1,0)后被x軸反射.
(1)求點M關(guān)于x軸的對稱點P的坐標;
(2)求反射光線所在的直線l3的方程.
(3)求與l3距離為$\sqrt{10}$的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x) 在點(1,0)處的切線方程;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-a(x-1)其中a∈R,求函數(shù)g(x) 在[1,e]上的最小值.(其中e 為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標系xoy中,已知曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).以原點O為極點,以x軸的非負半軸為極軸,與直角坐標系xoy取相同的單位長度,建立極坐標系.已知直線l的極坐標方程為ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點的橫坐標,縱坐標分別伸長為原來的$\sqrt{3}$,2倍后得到曲線C2,試寫出曲線C2的參數(shù)方程和直線l的直角坐標方程;
(2)求曲線C2上求一點P,使P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=$\frac{1}{4}$x上一點M到焦點的距離為1,則點M的橫坐標為$\frac{15}{16}$.

查看答案和解析>>

同步練習(xí)冊答案