19.已知$cos({\frac{π}{2}+α})=2sin({α-\frac{π}{2}})$求$\frac{{sin({π-α})+cos({α+π})}}{{5cos({\frac{5π}{2}-α})+3sin({\frac{7π}{2}-α})}}$的值.

分析 根據(jù)誘導(dǎo)公式和同腳的三角函數(shù)的關(guān)系即可求出

解答 解:∵$cos({\frac{π}{2}+α})=2sin({α-\frac{π}{2}})$,
∴-sinα=-2cosα,
∴tanα=2
原式=$\frac{sinα-cosα}{5sinα-3cosα}$=$\frac{tanα-1}{5tanα-3}$=$\frac{1}{7}$.

點(diǎn)評 本題考查了三角形函數(shù)的化簡和求值,關(guān)鍵掌握誘導(dǎo)公式,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號.
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)

(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42.
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
人數(shù)數(shù)學(xué)
優(yōu)秀良好及格
地理優(yōu)秀7205
良好9186
及格a4b
②在地理成績及格的學(xué)生中,已知a≥11,b≥7,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在區(qū)間[0,+∞)上的增函數(shù),則滿足f(2x-1)<f($\frac{1}{3}$)的x的取值范圍是[$\frac{1}{2},\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過點(diǎn)(-1,4),過拋物線的焦點(diǎn)F且與x軸垂直的直線交該拋物線于M、N兩點(diǎn),則|MN|=(  )
A.4B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)求平面EBD與平面ABC所成的銳二面角的余弦值;
(Ⅱ)直線EA與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.當(dāng)x∈[0,π]時,函數(shù)y=sin($\frac{π}{2}$-x)+sin(π-x)最大值與最小值的積是$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c滿足b2=ac且sinAsinC=$\frac{3}{4}$,則角B=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.從一個正方形中截去部分幾何體,得到一個以原正方形的部分頂點(diǎn)的多面體,其三視圖如圖,則該幾何體的體積為9,表面積為$\frac{27+18\sqrt{2}+9\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)M是?ABCD的對角線的交點(diǎn),三角形ABD的高AP為2,O為任意一點(diǎn),則($\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$-3$\overrightarrow{OA}$)•($\overrightarrow{OP}$-$\overrightarrow{OA}$)=(  )
A.6B.16C.24D.48

查看答案和解析>>

同步練習(xí)冊答案