1.若直線l:(a2-1)x-y-2a+1=0不過第二象限,則a的取值范圍為( 。
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

分析 將直線一般式方程化為斜截式,根據(jù)直線的特征列出不等式組,求出a的取值范圍.

解答 解:由(a2-1)x-y-2a+1=0得,
直線l的方程:y=(a2-1)x-2a+1,
∵直線l不過第二象限,
∴$\left\{\begin{array}{l}{{a}^{2}-1≥0}\\{-2a+1≤0}\end{array}\right.$,解得a≥1,
∴a的取值范圍為[1,+∞),
故選:D.

點評 本題考查直線一般式方程,以及直線的特征的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.直線x-y+1=0的傾斜角為( 。
A.90°B.45°C.135°D.60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.拋物線y=$\frac{1}{8}$x2的焦點坐標為( 。
A.($\frac{1}{32}$,0)B.(0,$\frac{1}{32}$)C.(0,4)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知一組樣本數(shù)據(jù)(xi,yi)如表
x3456
y2.5344.5
設(shè)其線性回歸方程$\widehat{y}$=bx+a,若已求出b=0.7,則線性回歸方程為( 。
A.$\widehat{y}$=0.7x+0.35B.$\widehat{y}$=0.7x+4.5C.$\widehat{y}$=0.7x-0.35D.$\widehat{y}$=0.7x-4.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知圓錐的高PO=4,底面半徑OB=2,E為母線PB的中點,C為底面圓周上一點,滿足OB⊥OC,F(xiàn)為弧BC上一點,且∠BOF=$\frac{π}{3}$.
(1)求證EF∥平面POC;
(2)求三棱錐E-OCF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,已知E,F(xiàn)分別是正方形ABCD邊BC、CD的中點,EF與AC交于點O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是線段PA上的一動點.
(1)求證:平面PAC⊥平面NEF;
(2)若PC∥平面MEF,試求PM:MA的值;
(3)在第(2)問的條件下,求平面MEF與平面NEF的夾角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$,則z=x-2y的最小值是(  )
A.0B.$\frac{3}{2}$C.-2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.三位女同學兩位男同學站成一排,男同學不站兩端的排法總數(shù)為36.(用數(shù)字寺寫答案)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|y=log2x,y∈Z},B={1,2,3,4,5,6,7,8,9},則A∩B=( 。
A.{1,2,3,4}B.{2,4,6,8}C.{1,2,4,8}D.{2,4,8}

查看答案和解析>>

同步練習冊答案