15.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S5<S6>S7,有下列四個(gè)說(shuō)法:
①d<0,②S6為Sn中最大項(xiàng),③S11>0,④S12<0,
其中正確的說(shuō)法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 由S5<S6>S7,可得a6>0,a7<0,進(jìn)而得出d<0,S6為Sn中最大項(xiàng),S11=11a6,S12=6(a6+a7),即可判斷出結(jié)論.

解答 解:∵S5<S6>S7,
∴a6>0,a7<0,
∴d<0,S6為Sn中最大項(xiàng),S11=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6>0,
S12=$\frac{12({a}_{6}+{a}_{7})}{2}$=6(a6+a7)與0的大小關(guān)系不確定,
可知:正確的說(shuō)法的個(gè)數(shù)是3.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式及其性質(zhì)、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)m,n分別是先后拋擲兩枚骰子所得的點(diǎn)數(shù),則m,n中有4的概率為( 。
A.$\frac{11}{36}$B.$\frac{5}{18}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知:向量$\overrightarrow a$=(1,-3),$\overrightarrow b$=(-2,m),且$\overrightarrow a$⊥($\overrightarrow a$-$\overrightarrow b$).
(1)求實(shí)數(shù)m的值;
(2)當(dāng)k$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$-$\overrightarrow b$平行時(shí),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某電視臺(tái)舉辦了“中華好聲音”大型歌手選修活動(dòng),過(guò)程分為初賽、復(fù)賽和決賽,經(jīng)初賽進(jìn)入復(fù)賽的40名選手被平均分成甲、乙兩個(gè)班,由組委會(huì)聘請(qǐng)兩位導(dǎo)師各負(fù)責(zé)一個(gè)班進(jìn)行聲樂(lè)培訓(xùn).如圖是根據(jù)40名選手參加復(fù)賽時(shí)獲得的100名大眾評(píng)審的支持票數(shù)制成的莖葉圖:

賽制規(guī)定:參加復(fù)賽的40名選手中,獲得的支持票數(shù)排在前5名的選手可進(jìn)入決賽,若第5名出現(xiàn)并列,則一起進(jìn)入決賽;另外,票數(shù)不低于95票的選手在決賽時(shí)擁有“優(yōu)先挑戰(zhàn)權(quán)”.
求:從進(jìn)入決賽的選手中隨機(jī)抽出3名,求其中恰有1名擁有“優(yōu)先挑戰(zhàn)權(quán)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}中,a1=1,a2=2,且an+1=4an-3an-1(n∈N*,n≥2)
(Ⅰ)令bn=an+1-an,求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}及數(shù)列{n•(an-$\frac{1}{2}$)}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(Ⅰ)已知等差數(shù)列{an}滿足a1+a2=a3,a1•a2=a4,求an
(Ⅱ)已知等比數(shù)列{bn}中,Sn為其前n項(xiàng)和,b1=2,S3=6,求q及Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=n2+2n+1,則數(shù)列{an}的通項(xiàng)公式為${a_n}=\left\{{\begin{array}{l}{4,n=1}\\{2n+1,n≥2}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(1-2x)(1+x)6的導(dǎo)函數(shù)f′(x)=a0+a1x+a2x2+…+a6x6
(1)求a3
(2)求a0+$\frac{1}{3}$a1+$\frac{1}{3^2}$a2+…+$\frac{1}{3^6}$a6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某人在同一條件下射靶50次,其中射中5環(huán)或5環(huán)以下2次,射中6環(huán)3次,射中7環(huán)9次,射中8環(huán)21次,射中9環(huán)11次,射中10環(huán)4次,該射擊者射中7環(huán)∽9環(huán)的概率是$\frac{41}{50}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案