17.如果橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1上點(diǎn)M的橫坐標(biāo)是-4,那么M點(diǎn)到橢圓右焦點(diǎn)F2(c,0)的距離|F2M|=4+$\sqrt{7}$.

分析 把x=-4代入橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1,可得M(-4,0),利用$c=\sqrt{{a}^{2}-^{2}}$可得橢圓右焦點(diǎn)F2(c,0),即可得出.

解答 解:把x=-4代入橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1,可得$1+\frac{{y}^{2}}{9}$=1,解得y=0.
∴M(-4,0),橢圓右焦點(diǎn)F2($\sqrt{7}$,0),
則|F2M|=4+$\sqrt{7}$.
故答案為:4+$\sqrt{7}$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知復(fù)數(shù)Z=(m2+5m+6)+(m2-2m-15)i,當(dāng)實(shí)數(shù)m為何值時(shí):
(1)Z為實(shí)數(shù);
(2)Z為純虛數(shù);
(3)復(fù)數(shù)Z對(duì)應(yīng)的點(diǎn)Z在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(Ⅰ)化簡(jiǎn)$\frac{sin(2π-α)tan(α+π)tan(-α)}{cos(π-α)tan(3π-α)}$.
(Ⅱ)計(jì)算$cos\frac{25π}{6}+cos\frac{25π}{3}+tan({-\frac{25π}{4}})+sin\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知實(shí)數(shù)a>0,b>0
(1)若a+b>2,求證:$\frac{1+b}{a},\frac{1+a}$中至少有一個(gè)小于2;
(2)若a-b=2,求證:a3+b>8;
(3)若a2-b2=2,求證:a(3a-2b)≥4$\sqrt{2}$+6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.直線(xiàn)y=x-1的傾斜角為45度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,
(1)已知$\sqrt{2}$a=2bsinA,求B;
(2)已知a2+b2+$\sqrt{2}$ab=c2,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.對(duì)任意x∈R,下列式子恒成立的是( 。
A.x2-2x+1>0B.|x-1|>0C.2x+1>0D.log2(x2+1)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的方程ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),直線(xiàn)l:$\left\{\begin{array}{l}{x=2t}\\{y=at}\end{array}\right.$(t為參數(shù))與曲線(xiàn)C交于A(yíng)、B兩點(diǎn).
(I)當(dāng)|AB|最大時(shí),求實(shí)數(shù)a的值;
(II)當(dāng)|AB|最小時(shí),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},求使A⊆B成立的所有實(shí)數(shù)a組成的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案